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There are more things

in heaven and earth, Horatio,
Than are dreamt of

in our philosophy.

William Shakespeare,

Hamlet | Act 1, Scene 5






Abstract

This document, written by Mattia Garatti under the supervision of Dr. Luca Tamanini
and the co-supervision of Dr. Nicolo De Ponti, constitutes the final exam paper for
the master’s degree course in Mathematics offered by Facolta di Scienze Matematiche,
Fisiche e Naturali of Universita Cattolica del Sacro Cuore.

Both optimal transport and the Schrodinger problem are interpolation problems:
in the former, one is interested in seeking the optimal deterministic way to send an
initial distribution onto a final target, where optimality depends on a given cost to be
minimized; in the latter, one aims at finding the most likely evolution for systems of
diffusive particles between two different observations.

At first sight, the two problems seem thus quite different, but a more careful insight
suggests a strong connection between the two: indeed, the Schrodinger problem can be
interpreted as a noised, or regularized, version of the optimal transport problem.

The aim of this thesis is to study some variational representations of these two
problems, thus highlighting, at least formally, how optimal transport can be recovered
as [-limit of the Schrodinger problem. The topics discussed lie at the interface between
Mathematical Analysis, Probability Theory and Geometry of the Wasserstein space,

thus representing a cutting-edge subject.
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Notations

For sake of clarity, we collect here some standard notations. We emphasize that we

adopt the French conventions on ordering.

Basics

Px

characteristic function of £ C X
indicator function of £ C X

natural logarithm of = > 0

set of natural numbers (so 0 included)
extended real line

canonical projection on the i-th factor

canonical projection on X

Functional analysis

tE
Lip(f)
Lip(X)
C(X:Y)

Cb(X; Y)

left orthogonal of F

Lipschitz constant of f € Lip(X)

space of Lipschitz functions over X

space of continuous functions from X to Y

space of bounded continuous functions from X to Y

space of compactly supported smooth functions from X to Y

space of (~n-equivalence class of) functions of H'(U) such that
Au € L2(U)



EJ_
qHY(U)
LO(X, 11;Y)

LP(X, 1;Y)

T, ST
Tp (T
Ty — X
Measure theory

Oz

NOTATIONS

space of (~n-equivalence class of) functions of H!(U) such that
Aue L} (U)

right orthogonal of E or (Hilbert) orthogonal of

Sobolev space W12(U)

space of (~,-equivalence class of) Borel functions from X to Y

space of (~,-equivalence class of) functions from X to Y p-summable

with respect to p
increasing convergence of xz,, to x
decreasing convergence of z,, to x

convergence of z,, to

Dirac delta measure centered in x

Radon—Nikodym derivative of v with respect to u

set of Borel finite signed measures over X

set of Borel finite positive measures over X

set of Borel finite positive normalized measures over X

set of Radon measures over X, i.e. Borel measures inner regular

and locally finite

set of positive Radon measures over X
Borel o-algebra over X

v <y and Z—Z =0

v is absolutely continuous with respect to u

equivalence relation induced by the measure p



Introduction

Let us put ourselves in the following situation: we have a certain quantity of mass

distributed in a certain way. We are interested in moving it to a new configuration.

/\

Figure 1: An intuitive representation of the optimal transport problem.

This requires a certain cost, so a question naturally arises, namely

What is the best way to transport the mass from the initial configuration

to the final one in order to minimize the cost of the transport?

The first to tackle this problem, in a mathematically rigorous way, was Gaspar Monge
and today it is known as the optimal transport problem. The problem has been then
reformulated by Leonid Kantorovich.

Let us now shift our attention to a different situation: a system of material points

that move with Brownian motion.

Figure 2: Pollen in the air moving of Brownian motion (Unsplash, CCO Public Domain).

11



12 INTRODUCTION

Suppose we know the initial and the final configurations of the system in a certain time

interval. What we might ask ourselves is
What is the most likely evolution of the system?

The previous question has been proposed, for the first time, by Erwin Schrodinger and
leads to the second variational problem of our interest, the Schréodinger problem.

At first sight, the only similarity between the two problems is the fact that both are
interpolation problems. We will see that a deeper connection can be established.

In the first three chapters, we focus on the abstract, compared with the sequel,
theory regarding the two problems by presenting their fundamental characteristics and
the first connections between them.

In Chapter 1 we present the primal formulations of the two problems: with regard
to optimal transport, we start from the historical definition given by Monge and then
move on to the less problematic definition provided by Kantorovich for which, under
appropriate hypotheses, we show the existence of solutions through the direct method
of the Calculus of Variations; in a similar way, we proceed for the Schrodinger problem
in order to be able to make a first comparison.

In Chapter 2 we analyze two dual formulations of the problems induced by convexity: in
particular, as regards the optimal transport problem, we present Kantorovich—Rubinstein
duality; as for instead the Schrodinger problem, we analyze the representation induced
by the variational formulation of the entropy functional.

With Chapter 3 we close the first abstract part of the thesis presenting the initial
properties of the Wasserstein space (Po(X), Ws) and some of its geometrical aspects.

In the last three chapters, the setting becomes more tangible: in fact, we place
ourselves in the Euclidean environment in order to study the most interesting variational
representations of the two problems, focusing on their ties.

In Chapter 4, increasing the complexity in the formulation of the problems, we can
show a dynamical representation, recovering the intuitive idea that underlies the two
problems.

In Chapter 5 we write both problems as fluid-dynamic problems under appropriate
constraints using the Benamou—Brenier formulas.

Chapter 6 is where we take stock by studying the representations of problems through
semigroups: as regards optimal transport, we determine explicit representations for
Kantorovich potentials through the Hopf-Lax semigroup; regarding the Schrédinger
problem, instead, we manage to provide the dual representation induced by the Hopf-Cole
semigroup that allows us to connect to the Kantorovich-Rubinstein duality introduced
in Chapter 2.
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Gaspard Monge (1746-1818)

Gaspard Monge was born on May 9, 1746, in Beaune (France).

Figure 3: Jean Naigeon, Portrait de Monge, oil on canvas, 1811, Musée des Beaux-Arts,
Beaune, France.

At the age of 16, he went to Lyon to attend the College de la Trinité where, only seventeen
years old, he would already be assigned to teach a physics course. He completed his
education in 1764 and then returned to Beaune where he drew up a plan of the city. For
this work, the year later, he was appointed to the Ecole Royale du Génie at Mézieres as a
draftsman. There, Monge got in touch with Charles Bossut. When the latter was elected
to the Académie des Sciences in 1768, the next year Monge succeeded him as professor
of mathematics. In 1771, Monge approached Condorcet who recommended to him to
present memoirs to the Académie des Sciences about his works. Monge submitted four
works on Calculus of Variations, Infinitesimal Geometry, Partial Differential Equations
and Combinatorics. In 1780, he was elected as adjoint géometre at the Académie des
Sciences in Paris. On September 21, 1789, given his political alignment in favor of
the Revolution, he was offered the post of Minister of the Navy, a position he carried
out with little success. After a few months, he immediately returned to the Académie,
which was then abolished on August 8, 1793. Nominated by the National Convention
on March 11, 1794, to the body for establishing the Ecole Centrale des Travaux Publics,
which would soon become the Ecole Polytechnique, he was appointed there as instructor
in descriptive geometry on November 9, 1794. His lectures here were the origin of his
book "Application de I'analyse a la géométrie", for which he is considered the father of

differential geometry. Further information on his life can be found in [51].

He died on July 28, 1818, in Paris (France).
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Leonid Kantorovich (1912-1986)

Leonid Vitalyevich Kantorovich was born on January 19, 1912, in St. Petersburg
(Russia).

Figure 4: A young Leonid Kantorovich in 1939 (picture from [46]).

Only fourteen years old, he started his mathematical studies at the Leningrad State
University, graduating in 1930 at 18 years old, having reached the level equivalent to a
doctorate and continuing his research at the Mathematical Department of the Faculty of
Physics and Mathematics of Leningrad State University: he would not formally receive
a PhD until 1935 because of the abolition of doctoral degrees by the Soviet Union. In
1930, he was appointed as an assistant in the Naval Engineering School and then, the
following year, as a research associate in his university. In 1932, he became associate
professor in the Department of Numerical Mathematics and from 1934 he was a professor.
His young age was, in a certain sense, a problem; for example, his first lecture became
famous because many students shouted at him to sit down and wait for the professor
to arrive like everyone else: too bad the professor was him. In 1933 he published with
Vladimir Ivanovich Krylov the book Calculus of Variations, the first of his more than
300 contributions to mathematics, economics and computer science. During his career,
he won numerous prizes in both mathematics and economics, including the 1975 Nobel
Prize in Economics for his contribution to the optimal transport theory. In the 1980s,
Kantorovich himself suggested a way to divide up all his contributions, proposing nine
distinct areas: descriptive function theory and set theory, constructive function theory,
approximate methods of analysis; functional analysis, functional analysis and applied
mathematics, linear programming, hardware and software, optimal planning and optimal
prices, the economic problems of a planned economy. Further information on his life
can be found in [52].
He died from cancer on April 7, 1986, in Moscow (USSR).
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Erwin Schrédinger (1887-1961)

Erwin Rudolf Josef Alexander Schrodinger was born on August 12, 1887, in Erdberg
(Austria).

N

Figure 5: Erwin Schrodinger (picture from [50]).

Up to the age of ten he has been home-schooled by a private tutor and in the autumn
of 1898 he entered the Akademisches Gymnasium, later with respect to usual because
of a long holiday in England. After the graduation in 1906, he entered the University of
Vienna. On May 20, 1910, Schrodinger was awarded his doctorate for the dissertation
On the conduction of electricity on the surface of insulators in moist air and then
undertook voluntary military service. He participated in World War I and, in the spring
of 1917, he was sent back to Vienna and he started to teach a meteorology course. In
1926, Schrodinger published his revolutionary work about the general theory of relativity
and wave mechanics. With his wife’s knowledge, with whom he never had a good
relationship, he had many lovers, including the wife of his colleague Arthur March, Hilde.
When Alexander Lindemann, head of physics at Oxford University, visited Germany
in the spring of 1933, Schrédinger asked him for a position in England for him and
Arthur because he decided he could not live in a country in which the persecution
of Jews had become national policy. In summer 1933 Hilde became pregnant with
Schrodinger’s child and on November 4, 1933, Schrodinger, his wife and Hilde arrived in
Oxford where, after a while, he discovered he had been awarded the Nobel Prize. From
this time, Schrodinger openly had two wives. He went back to Austria and spent the
years 1936-1938 in Graz but on August 26, 1938, the Nazis dismissed him for political
unreliability: it was the consequence of his decision of 1933. After a year in Gent, he
went to Dublin where he remained until he retired in 1956 when he returned to Vienna.
Further information on his life can be found in [50].
He died on January 4, 1961, in Vienna (Austria).






Preliminaries

In this initial part, we describe some general topics and results that will be used in

the subsequent chapters.

1 inf-convolution of functions

(P.1) Definition Consider a metric space (X, d) and a function f: X — [0, +oo[. We

call inf-convolution of f the sequence (I f) such that

Inf(z) = inf {min{f(y), h} + hd(z,y)}.

The main properties of the inf-convolution operator are recalled in the following

Proposition.

(P.2) Proposition Consider a metric space (X,d) and a function f: X — [0, +0o0].
The following facts hold true:

(a) (Znf) is an increasing sequence,

(b) for every h € N and x € X
Inf(x) = 0,

(c) for everyh € N andxz € X

Inf(z) < f(=), Inf(x) < h,

(d) for every h € N the function I, f € Lip,(X),

(e) if f is lower semicontinuous, then I,f 7 f pointwise.

17



18 PRELIMINARIES

Proof.

(a) Consider h, k € N such that h < k. For every x € X one has

() = inf {min{f(y),h} + hd(z,y)} < inf {min{f(y), k} + kd(z,y)} = L. f (),
so (Z,f) is increasing.

(b) It follows directly from the fact that distance is always positive.

(c) Tt is a straightforward computation: for every h € N and x € X

T (x) = inf {min {f(y), h} + hd(w,)} < min {f(z), A} + hd(z,2) = min {f(@), b} .

(d) For every h € N, fixed y € X, the function {z — min{f(y), h} + hd(z,y)} is
Lipschitz, so Z,, f, that is the pointwise infimum with respect to y, is also Lipschitz.

Boundedness comes from the second inequality in (¢).

(e) First of all, from (a) and the first inequality in (c), for every x € X
(P3) i 73 (2) = sup T (2) < 1(z),

then sup Zj, f(z) < +oo, since f is finite valued. Now, let us consider a minimizing
h

sequence (y,) such that

1

min { f(yn), h} + hd(z,yn) < Inf(x) + Tk

In particular, since min {f(ys), h} > 0,

1

< _—
hd(x,yp) < sup Tnf(x) + o

Passing to the limit as h — 400, the only possibility is d(z,y,) — 0 or, in other words,
yn — x. Now, since hd(x,y,) > 0,

1

min {f(yn),h} <Inf(z) + h+1

and passing to the liminf as h — +oo,

limhinf f(yn) <sup I, f(x).
h
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Then, by lower semicontinuity of f,

(P.4) f(x) <Tnf().

Combining (P.3) and (P.4), we obtain
lim 7, (x) = sup L f(z) = f(z),

as desired. m

2 Push forward of measures

(P.5) Definition Consider two metric spaces (X,dx), (Y,dy) and a Borel function
f:X =Y. We call push forward operator of f the function fu : R(X) — R(Y) such
that for all B € B(Y)

fan(B) = p(f~1(B)).
In particular, fup is called push forward measure.

Clearly, (g o f)g = gg o [

(P.6) Proposition (change of variables formula) Let (X, dy), (Y, dy) be two metric
spaces and f: X =Y, ¢ : Y — R Borel functions. If p € R(X), then

/Ysodf#/uF/X(swf)du'

In particular, a function v : X — R is fyu-integrable if and only if 1 o f is u-integrable.

Proof. Let us suppose initially ¢ = yp for some B € Z(Y). Then

/Y Ndfir = / df i = en(B) = u(f 1 (B)) =

:/ du:/ 1du—i—/ 0du =
f~1(B) f=1(B) X\f~4(B)

By linearity, the same holds true for every Z(X)-simple function ¢ : Y — [0, +o0]. If
¢ :Y — [0, +00] is Borel, the same holds by the monotone convergence Theorem. The
general case and the second part of the statement follow considering the positive and

negative parts of the integrands on both sides. =
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(P.7) Example Let (X,dx),(Y,dy) be two metric spaces and m € R(X x Y). If
px : X XY — X and p = (px)am, then for every Borel function ¢ : X — R

/soduz/ sod(px)#WZ/ (s@opx)dWZ/ pdr.
X X XxY XXY

In particular, using the change of variables formula, we can exhibit a quick way to

check the condition fuu = v as we can see in the following Proposition.

(P.8) Proposition Let (X,dx),(Y,dy) be two metric spaces, f : X — Y a Borel
function , p € R(X) and v € R(Y'). The following facts are equivalent:

(CL) f#:u:V7

(b) for all p € Cy(Y'), one has

(P9) [ wtv=[ (oo pan

Proof.
(a) = (b) It is a direct consequence of Proposition (P.6).
(b) = (a) Let us start by noticing that

{BeB(Y):u(f(B) =v(B)}

is a o-algebra. As a consequence, the condition fxu = v needs only to be checked on
a family of generators of Z(Y). In particular, we only need to check fuu = v on the
open subsets of Y. Let, therefore, A CY be open and for every n € N consider

1
A, = {:c € A:dist(z,04) > }
n+1

and ¢, 1 Y — R in Cp(Y) such that

on(2) = (1 — (n + Ddist(z, A,))".

Since ¢, " x4, using the monotone convergence Theorem, (P.9) is also true for ¢ = x 4.

In particular,

Fp(A) = u(F71(A)) = /f R [ o frn= [ xadv = v(a).m
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(P.10) Lemma Let (X, U),(Y,V) be two measurable spaces, e : X — Y a (U,V)-
measurable function, p € M, (X) and v € LP(X,;R”) with p € |1,+0c[. Then
ex(vp) < exp with density w € LP(Y, eyp; R®) such that

||w||LP(Y,6#u;]Rk) < ”UHLP(X,N;R’“)'

Proof. Consider ¢ : Y — R* bounded and measurable. By Holder’s inequality,

[denton|=

so the linear operator

/X (¢ 0 &)(@)d(vp)(x)

[woo) vdu‘ < ol €l s i

Q= /Y pdey(vp)

is continuous with respect to the L¥'(Y, expt; R¥) norm. Recalling the density of the
set of bounded and measurable functions in L (Y, expt; RY), we can easily extend the
previous operator to L (Y, euu;RF), then, by duality, it is representable by some
w € LP(Y, exu; R¥) such that

||w||LP(Y,e#u;]Rk) < ”UHLP(X,M;R’“)'

The fact that w is the density of ex(v,) with respect to e follows by construction. m

3 Polish spaces and convergence of measures

(P.11) Definition Given a measurable space (X,U) and a measure p on (X,U), we
call A € U an atom, if u(A) > 0 and for any B € U such that B C A one has

0 € {u(B),u(A\ B)}.

In particular, we call a measure atomic if it admits at least an atom and non-atomic if

it has no atom.

To better comprehend the previous definition, let us build some concrete examples

of atomic and non-atomic measures.

(P.12) Example Consider R" endowed with the Euclidean distance. The Lebesgue
measure L™ is non-atomic and the Dirac delta measure oy is atomic. In particular, the

measure p = L™ + 0y is atomic.
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(P.13) Definition Given a metric space (X,d) and p € R(X), we call support of p
the set

supt(pu) = {z € X : |p|(U) > 0 for all U C X such that U is open and x € U}.

The previous set is closed and, if (X, d) is separable, one can prove that p € R(X)
is concentrated on supt(u).

Let us now introduce the fundamental abstract setting in which we will work.

(P.14) Definition Given a topological space (X, T), we call it Polish space if there

exists a distance d on X such that d induces 7 and (X, d) is complete and separable.

In the following, we will always fix a distance for each Polish space, so we will think
of a Polish space (X, 7) as a complete and separable metric space (X, d). One can prove
that every open subset of a Polish space is also Polish (when equipped with the induced

distance): see [1] for the technical details.

(P.15) Lemma (Ulam) If (X,d) is a Polish space, then for every p € M (X) and
for every € > 0 there exists K C X compact such that u(X \ K) < e.

Proof. See [1, Lemma 1.5 =

For the sake of completeness, let us recall the following fundamental result.

(P.16) Theorem (disintegration) Let (Z,dz),(X,dx) be Polish spaces, u € P(Z),
7 Z — X a Borel function and v = mup € P(X). There exists a v-a.e. uniquely
determined Borel family {ji,},.x € P(Z) such that

pe(Z\ 71 (z)) =0 for v-ae. € X

and for every Borel function f: Z — [0, +0o0]

[ = [ ([ et ) ivto)

Proof. See [19, Chapter III, pp. 78-81]. =

Despite the tremendous power of the disintegration Theorem, what we will mostly

use is the following Corollary.
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(P.17) Corollary Let (X1,dy), (X2, ds) be Polish spaces, i1 € P(X1xX,) andv = plu €
C P(Xz)

r1eX] =

P(X1). There exists a v-a.e. uniquely determined Borel family {ji., }
such that for every Borel function f: X7 x Xy — [0, +00]

/Xlxx2f<x1’x2>d’”‘(x17x2) = /X1 ( . f($17x2)dﬂm1<$2)> dv(zy).

Proof. Tt is a direct consequence of the identification of (p')~!(x;) with X, and the

disintegration Theorem. m

We can now pass to introduce the notion of weak convergence of measures: it is a
key choice for the direct method of the Calculus of Variations and also for the geometric

analysis of Wasserstein spaces.

(P.18) Definition Let (X,d) be a metric space and (u,) in R(X). Given p € R(X),
we say that (u,) weakly converge to p, and we denote this fact with p, — p, if for every

¢ € Cy(X)
lim/ godun:/ wdp.
" Jx X

In the following Lemmas, which constitute a proper subset of the Portmanteau

Lemma, we explore equivalent definitions for weak convergence of measures in P(X).

(P.19) Lemma Let (41,,) in P(X) and p € P(X). The following facts are equivalent:

(@) pn — p in P(X),

(b) for all f € Lip,(X) one has
dpi, dpu.
/Xf p —>/Xf Z

Proof.

(a) = (b) Obvious.

(b) = (a) Let f € Cp(X) and consider (Z, f) its inf-convolution. We already know that
(Zf) is a bounded from below increasing sequence of Lipschitz functions and Zy, f 7 f
pointwise. Consider also (Z,(—f)), a bounded from below and increasing sequence of
Lipschitz functions such that Z,,(—f)  —f pointwise. Up to a change in the sign, we
obtain a bounded from above and decreasing sequence (—Z,(—f)) of Lipschitz functions
such that —Z,(—f) \ f pointwise.
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Now, for every h € N one has
lim inf / fdp, > liminf / Tnfdu, = / Infdu
" X " X X
so passing to the limit as h — 400, by the monotone convergence Theorem, it results

liminf/fd,uHZ/fdu.
" X X

Analogously, using (—Z(—f)) we have

imsup [ f, < [ s
n X X

and the proof is complete. =

(P.20) Lemma Let (u,) in P(X) and p € P(X). The following facts are equivalent:
(@) pn — p in P(X),

(b) for all f: X — R lower semicontinuous and lower bounded one has

liminf/fd;zHZ/fd,u.
" X X

Proof. 1t is similar to the proof of Lemma (P.19). =

(P.21) Lemma Let (u,) in P(X) and p € P(X). The following facts are equivalent:
(@) pn = p in P(X),
(b) for every A C X open, one has

liminf 4i,(A) = p(A),

(¢) for every C C X closed, one has

limsup 1,(C') < p(C).
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Proof.

(a) = (b) Take x4 and consider (Z,x ) its inf-convolution. Using the fact that x4 is
lower semicontinuous because A is open, we can observe that (Z,x4) is a bounded and

increasing sequence of Lipschitz functions such that Z, x4 " x4 pointwise. Now,

lim inf pn(A) = lim inf /

Xadft, > liminf / Inx adfn,
X " X

and using Lemma (P.19),
liminf p,(A) > / Tnxadp.
" X

Passing to the limit as h — 400, by the monotone convergence Theorem,
hmﬁMME/mwzmﬂ
" X
(b) <= (c¢) By the fact that pu, is a finite measure,

11 (C) = pn(X) — (X \ O).

Now,
limsup 4, (C) < limsup p1, (X) — lim inf 42, (X \ C),

but p,(X) = u(X) =1 and using (b) we obtain
lim sup 1 (C) < p(X) = u(X\ €) = u(C).

The converse implication is similar.

(b) = (a) For every f € Cy(X) positive, Fubini-Tonelli’s Theorem implies

LﬁmM—Amﬁmw>ﬂW-

Let us prove that for all ¢ > 0 such that pu({f =t}) =0, one has

lim g, ({f > t}) = p({f > t}).

Using (b), we can first of all write

p({f > t}) < liminf p,({f > t}).



26 PRELIMINARIES

Now,

pdf >t}) = ul{f > t3) + u({f =t}) = p{f = t})

and using (c¢) we can affirm that

p({f > 1) < liminf o ({f > 1}) < lisup o ({f > 1)) <

< limsup pn({f > }) < p({f = t}) = u({f > 1})

SO

lim i ({f > 1}) = p({f > t}).

Using this fact and the dominated convergence Theorem,

sup f
i [ o, =t [ (5 > thyde = [ s

The general case follows by splitting the positive and negative parts of a function

fe Ob(X) ]

Thanks to the notion of weak convergence, we can define a topology on R(X): it
is sufficient to define closed sets as the set containing the limits of every one of their
sequences. We will refer to this construction as weak topology. Unless otherwise specified,
we will always consider R(X) endowed with the weak topology. The following is a
geometrical analysis result about P(X): the proof is based on Riesz’s Theorem and

Banach-Alaoglu-Bourbaki’s Theorem, for which we refer to [9].

(P.22) Theorem If (X,d) is a compact metric space, then P(X) is weakly compact.

Proof. By [9, Theorem 4.31], R(X), endowed with total variation norm, is isometric to
its dual, C'(X). In this sense, weak convergence induces the weak* topology so, by [9,
Theorem 3.16], being P(X) the closed unit ball of R(X), the thesis follows. m

In order to show a compactness criterion in M, (X), we introduce the notion of

tightness.
(P.23) Definition Let (X, d) be a Polish space and F C M (X) such that sup pu(X) <
eF

m
+o00. We call F tight if for every e > 0 there exists K C X compact such that for all
p € F one has (X \ K) < e.

(P.24) Theorem (Prokhorov) Let (X,d) be a Polish space and F C M (X) such
that

sup p(X) < +oo.
HEF
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Then F is weakly compact if and only if F is tight.

Proof. Without loss of generality, we can only consider the case F C P(X). Indeed,
given

f’:{u’eP(X):VEEK@(XW(E):ZEQ’ MGF}’

suppose F’ is weakly compact. Given (p,) in F, consider () in F'. By weak
compactness, there exist (u;, ) in F" and p' € F' such that p;, — p/ in F'. In particular,
pn; — pin F and so F is weakly compact.

Suppose that F C P(X) is tight. By definition, we can find an increasing sequence
(K1) of compact subsets of X such that

limsup pu(X \ K) = 0.
h per

Let () be in F. For every h € N, if we consider (u, | K}), in P(K}), weakly compact
thanks to the compactness of Kj,, then there exist (i, [K4); in P(Kj) and v, € P(K})
such that pu, K, — v in P(K}). Up to defining, for A € #(X), v,(A) = 0 if
AN Ky, =0, we can view v, as a measure in P(X) with support in K, and we have that
pin; | Kp — g in P(X). In particular, by the fact that (K) is an increasing sequence,
Vg < Vgy1-

Now,

L= sup (X \ K3) < fiay(Z) = pin, (X \ Kn) = iy (Z 1K) = oy LEn(X) < 1,

HEF

then passing to the limit as j — +o00 we obtain

1= sup (X \ ) < m(X) < 1,

HEF

therefore, observing that additivity comes from the monotonicity of (v,),

v =sup v, € P(X).
heN

Now, given ¢ € Cy(X), one has

/X ed(pn; — V)

< +

+ <

/X @d(fin; — ;| K1) /X ed(fin; | Kn — vp)

/X pd(vy, — v)

/X‘Pd(Vh —v)

_|_

< sup sup (X \ Ky) ++ / o, | K — v2)
BEF X
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and taking j, h — +00

lim
j

=0,

/X ed(tin; — V)

Suppose now that F is weakly compact. Fixed ¢ > 0 and (x;) in X such that

then F is weakly compact.

{$i 11 € N} = X,
we want to prove that for any j € N there exists k; € N such that for all p € F,

k-
j 1 '
X B ., 1 <2_].
(008 (i) =2

Suppose the claim is false, then there exists jo € N such that for any k € N there exists

w1, € F such that
Jo (i)
X Blz;——] ] >2 .
e ( \ZL:JO ( Jo+1

By weak compactness of F, there exist (u,) in P(X) and pu € P(X) such that g, — p.

o (s 5)) 22
X B LTiy Z 2_3057
: ( \szjo ( Jo+1

but if k — 400, we obtain 0 > 2779¢, in contradiction with £ > 0.

If n — 400, one has

The claim proved implies that sup pu(X \ K) < e, where
HEF

ki — 7 1 N\
[e%e) J 1

§=04=0

so F is tight. m

4 Convex Analysis: a toolbox

In the following section, unless otherwise specified, we will assume that X and Y

are two sets and ¢: X x Y — R is a Borel function.

(P.25) Definition We call  C X x Y c-cyclically monotone if for every n € N\ {0},

(x1,1)s -+ (Tn, yn) € & and every permutation o

n n

(i, Yoriy) = Y (@i, yi).-

1 i=1

)
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(P.26) Definition Given ¢ : X — [—o00, +00[, we call c-conjugate of ¢, the function

°(y) = inf {elz.y) — pla)}.

Analogously, if ¥ 1 Y — [—00,400], we call c-conjugate of 1, the function

V(x) = inf {c(z,y) — o(y)}-

yey

(P.27) Definition We call f : X x Y — R c-affine if it is of the form c(-,y) + « or
c(x,) + B for some z € X,y € Y,a,8 € R. Moreover, we call a function ¢ : X —
[—00, +00[ c-concave , if it is the infimum of a family of c-affine functions of the form
c(+,y) + a. Analogously, we call a function ¢ 1Y — [—00, 00| c-concave, if it is the
infimum of a family of c-affine functions of the form c(x,-) + f3.

One can prove that ¢ : X — [—o00, +00[ is c-concave if and only if it is the c-conjugate

of a function .

(P.28) Proposition Consider (X,d) a metric space and a function ¢ : X — R. The

following facts are equivalent:
(a) ¢ is d-concave,
(b) ¢ € Lip(X) and Lip(p) < 1.

In particular, in this case p° = —p.

Proof.
(a) = (b) Let ¢ be d-concave. Then there exists ¢ : X — RU {400} such that for
every v € X

p(r) =9°(z) = yig)f( {d(x,y) —¥(y)}-

Fixed y € X, for every x, z € X, by the triangle inequality,

d(z,y) —¥(y) — (d(z,y) — ¥(y)) = d(x,y) — d(z,y) < d(w, z)

then, the function {z — d(z,y) — ¥ (y)} € Lip(X) has a Lipschitz constant less than or
equal to 1. Being ¢ the infimum of the family above, it follows that ¢ € Lip(X) and

Lip(p) < 1.
(b) = (a) Let ¢ € Lip(X) and Lip(¢) < 1. Let us prove that for every x € X

(P-29) pla) = inf {d(z,y) +¢(y)}.
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Clearly,

inf {d(z,y) + oY)} < p(2).

On the other hand, |p(z) — ¢(y)| < d(z,y) so in particular p(z) — ¢(y) < d(z,y) then

p(r) < d(x,y) + ¢(y)

and passing to the infimum for y € X we obtain
() < inf {d(z,y) + ¢(y)}-
yeX

Observing that (P.29) corresponds to ¢ = (—¢)¢ and applying this fact to —¢ we
obtain ¢ = —p. =

(P.30) Theorem If ¢ : X — [—o0,+o0[ and ¢ # —o0, then (¢°)° > .

In particular, the equality holds if and only if ¢ is c-concave.
Proof. See [1, Theorem 3.14]. =

(P.31) Definition Given ¢ : X — [—o00,400] and v € X such that p(x) > —oo we

call c-subdifferential of ¢ in x the set
Op(r) ={y €Y : 9(§) < p(z) = c(,y) + (&, y), V§ € X}

One can prove that p(x) + ¢°(y) = ¢(x,y) if and only if y € 0°p(z), if and only if
x € 0°(y).

(P.32) Theorem Let & C X XY be c-cyclically monotone. Then there exists a c-concave
function ¢ : X — [—00, 400 such that & C graph(9°yp).

Proof. Fixed (x,0) € &, the function

o(z) = inf (c(z,yn) — c(TnsYn) + (Tn, Yn-1) — (Tp—1,Yp—1) + - -+
neN\{0}
(1,Y1)5--->(Zn,yn)Esupt(r)

+c(z1,Y0) — (0, Yo))

satisfies the required condition and also ¢(zy) = 0. See [1, Theorem 3.18] for further

details. =
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5 Absolutely continuous curves and geodesics

In the following section, unless otherwise specified, we will consider a metric space
(X, d). We are interested in defining geodesics, so we only consider curves that are not
loops, namely functions v : [a, b] — X such that vy(a) # ~v(b). Let us start from the most

general container: absolutely continuous curves.

(P.33) Definition Leta,b e R. We call vy : [a,b] — X an absolutely continuous curve,
and we write v € AC([a,b]; X), if there exists g € L*(a,b) such that for all z,y € [a, ]
such that x < y one has

d(v(y), v(z)) < / g(t)dt.
If g € LP(a,b) for some p € ]1,+00], then we write v € AC?([a, b]; X).

(P.34) Lemma Let a,b € R. If v :[a,b] — X is an absolutely continuous curve, then

it is uniformly continuous.

Proof. We already know that for all g € L!(a,b), for all € > 0, there exists § > 0 such
that for every B € %([a,b]) with £'(B) < § one has

/|g|cl£1 < e.
B

Therefore, if 2,y € [a,b], and without loss of generality x < y, with £!([z,y]) = |z —y| <

6 one has ,
d(v(y),v()) S/ lgldLt < e

as required. m

For a very general setting, we only define the absolute value of the derivative of an
absolutely continuous curve; meanwhile, when we are in the Euclidean case, everything
will be much simpler. In any case, existence and uniqueness are given by the following

Theorem.

(P.35) Theorem Let a,b € R. For any v € AC([a,b]; X), the limit

exists for a.e. t € |a,b[. In particular, this limit is the minimal g that we can choose in

the definition of an absolutely continuous curve, up to L'-negligible sets.
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Proof. By Weierstrass Theorem, up to replacing X with ~([a, b]), we can assume X to

be compact.

Consider (z;) a countable and dense subset of X and define for every ¢ € N a function
fi : [a,b] = R such that
fi(t) = d(y(t), z).

The fact that f; is well defined comes from the compactness of X. Using the triangle
inequality and the definition of an absolutely continuous curve, for every z,y € [a, b

such that x <y, we can write for any admissible g € L'(a, b)

\M@—ﬁ@ﬂéﬂ%wmwﬁﬁ/wmﬁ,

T

So, up to repeating the estimate for y < x, we can affirm that (f;) in AC([a,b]; X), then,

for every i € N, f/ exists a.e. in ]a, b[ and since
Y ! 1
£0) ~ fi@) = [ Fact
we have for every z,y € Ja, b| such that x <y

Y Yy Yy
/ —gdL' < / fdct < / gdl!

so —g < f' < g a.e. in |a,b[. In other words, |f/| < g a.e. in |a,b[. By the fact that
sup |f(t)| < g a.e. in ]a, b,
ieN

then sup |f/(t)| € L'(a,b). Consider now ¢ € ]a, b[ such that f/(¢) exists for any i € N,
ieN
then by triangle inequality

poning AOEFRAW) L) = ()

g
h—0 |h| h—0 |h| N |fl(t>|

and passing to the supremum

lim inf dr(t £ h), 7 (1) > sup | fi(t)].
h—0 ‘h| ieN

Now, if h > 0, we have

t+h t+h
fe+n) =01 < [ Iflaet < [ s et
t t 1eN
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Let us show that

sup [d(y(t+ h), zi) — d(y(t), z:)| = d(y(t + h),7(t)).

By triangle inequality, for every ¢ € N,

|[d(y(t + D), zi) = d((t), z))| < d(y(E+ h),7(1))

sup [d(y(t + h), z;) = d(7(1), ;)| < d(y(t+ h),7(1)).

ieN
On the other hand, by density, there exists (z;;) such that z;; — () so, by continuity

of the distance,

sup [d(y(t +h), zi) = d(v(t), z1)| = sup |[d(y(t + D), z;;) = d(y(1), 2;;)| = d(7(t + h),~(1))-

ieN jeN

We have therefore arrived at

sup [fi(t + h) = fi(t)] = sup [d(v(t + ), ;) = d(y(1), ;)| = d((L + ), ¥(t))

i1eN 1€EN
SO

t+h
d(y(t+h),~(t)) S/ Sup | fildc.
t i

Considering t a Lebesgue point of sup |f/|, we obtain
iEN

d(v(t+ h),~(t 1 [t
lim sup 20 +h)’7< ) lim+h/ sup | fi|dL! = sup | f{|(2).
h—s0+ h—0 t €N €N

Being able to build an analogous estimate for h < 0, we obtain for a.e. t € |a, b]

(P.36) Definition Let a,b e R. For any v € AC([a,b]; X) we call metric derivative of
v the function || : ]a,b] — R defined up to negligible sets by

(P.37) Lemma Let (X,d) be a metric space, v : [0,1] — X a curve and g € L*(0,1)
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a.e. positive such that for every s,t € [0,1] with s <t
t
P < (-9 [ gac,

Then v € AC?([0,1]; X) and || < g a.e. in (0,1).

Proof. First of all, by Young’s inequality, for every s,¢ € [0,1] with s < ¢, using the

assumption,

t 1 1 t 1 t
ﬂ%%%médﬁ—ﬁ/g%USQ@—@+2/gWU=2/ﬂ+fMU,
so v € AC([0,1]; X). In particular, it is well defined |y'|(¢), and by the fact that for a.e.

t e [0,1]
d*(y(t + h),v(t)) 1 o 2 7,1
< —
72 < h2h/t g dL,

we have for a.e. t € [0, 1], by Lebesgue’s points Theorem,

so |¥/| € L?(0,1) and the estimate holds. =

In order to arrive at the definition of geodesics, we have to talk about the length of

curves.

(P.38) Definition Let a,b € R. For any v € AC([a,b]; X) we call length of

b
uwz/wwm.

Arranging what has been said so far, it is clear that I(y) > d(v(a),y(D)).
(P.39) Definition Let a,b e R. We say that v € AC([a,b]; X) has constant speed if

17| is, up to negligible sets, a constant.

(P.40) Lemma Let a,b € R. If v € AC([a,b]; X) has constant speed, then it is
Lipschitz.
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Proof. From the definition of absolutely continuous curve, combined with Theorem
(P.35), for all z,y € [a,b] such that z <y one has

Yy
dr(@) ) < [ 1kt < e ol
If y < x the argument is analogous, so the result follows. =

Even if constant-speed curves seem like something new, they are actually nothing
more than reparameterizations of absolutely continuous curves, as we can see in the

next Proposition.

(P.41) Proposition Let a,b € R. For any v € AC([a,b]; X), there exists 7 €
AC([0,1]; X') with constant speed equal to () such that v([a,b]) = ([0, 1]), v(a) = 7(0),
and ~(b) = 3(1).

Proof. We only consider the case when {t — 1 (7|[a7t])} is strictly increasing in [a, b].
Consider L : [a,b] — [0,1()] such that

L(t) = 1(V]{a,)-

From the definition of an absolutely continuous curve, for every u,v € [0, ()] such that

u < v,

—1 —1 Lil(v) !/ 1 Lil(v) !/ 1 Lil(U) / 1
Ay (L ()7 (L (0))) < / et = / Iy |dLt — / AL = v —u

L=1(u

soyo L7 :]0,l(y)] — X is Lipschitz. On the other hand, by the invariance of the

length under reparameterization

1(v)
Iy) = l(yo L) = / (v o LY|dL?,
0

so it must be |(yo L™!)'| =1 a.e. in ]0,{(7)[. The desired reparameterization is obtained

up to a linear rescaling of yo L™!. m

We finally arrive at defining geodesics.

(P.42) Definition Let a,b € R. We say that v € AC([a,b]; X) is a geodesic if
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(P.43) Lemma Let a,b € R. If v € AC([a,b]; X) is a geodesic, then for every
c,d € [a,b] such that ¢ < d also |.q is a geodesic and the metric derivatives coincide

a.e. inc,d|.

Proof. We only need to prove that

d
D)= [ |iac

By triangle inequality, Theorem (P.35) and the fact that v is geodesic, one has

dx(a), () < d(1(a), 7)) + d((),7(d)) + d(7(d), 7(B)) <
/ Iy ldL! + / Iy ldL! + / 7/ldC? =
/ yldc! = d(y(a), (b))

SO

d(y(@), 1(0)) + d((e), A(d)) + d(y / y/lac! + / y/lac! + / yldct >
> d(~( / AL + d(y(d), 4 ().

In particular,
d
A2 (@) = [ 1lde!

and the result follows. =

(P.44) Notation We denote with Geo(X) the set
Geo(X) = {y € AC([0,1]; X) : || = 1(7) = d((0),7(1))} -

The set Geo(X) admits the following characterization.

(P.45) Proposition Consider a curve v : [0,1] — X. The following facts are

equivalent:
(a) v € Geo(X),

(b) for every s,t € [0,1] one has

d(7(s),7(t)) = [s = t]d(v(0), (1)),
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(¢) for every s,t € [0,1] one has

d(7(s),7(t)) < |s — t[d(7(0),~(1))-

Proof.
(a) = (b) If v € Geo(X), for every s,t € [0,1] such that s <t also 7| is a geodesic
with the same constant speed |y/|(t) = () = d(v(0), (1)), so

d((s), (1)) = 1(7]is.1) =/ [Y]dLh = |s — t]d(7(0),7(1)).

The case t < s is analogous.
(b) = (c¢) Obvious.
(¢) = (a) Let us start by saying that v € AC([0,1]; X): indeed, for every s,t € [0, 1]

with s <t we have

d(7(s),7(t)) < [s = t]d(7(0),7(1)) :/ d(v(0),v(1))dL".
In particular, by Theorem (P.35), for a.e. t € ]0,1]

YI(t) < d(v(0),7(1)).

Integrating with respect to t we have

/0 ldC! < d(~(0),7(1))

and remembering that

/0 1AL = 1(7) > d(7(0),7(1)

we obtain
In other words,

so v is a geodesic.
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It only remains to prove that |y/| = d(v(0),v(1)) a.e. in |0, 1[. Suppose not, then

L0, 1]({17'] < d(v(0),%(1))}) > 0.

Consider the measurable sets

A={t€[0,1]: [7|(t) < d(~(0),7(1)}

and
B={tel0,1]:[y|(t) = d(v(0),7(1))}.

Since |7'| < d(v(0),7(1)) a.e. in 0, 1], we have
L=L({t €[0,1] : ['[(t) < d(v(0),%(1))}) = L1(A) + L(B),
[ tact = [ e+ [ e < ao o)) + £48) = dia0.40)
that is a contradiction. In conclusion v € Geo(X). =
(P.46) Lemma Geo(X) C C([0,1]; X) is closed.

Proof. Consider (7,) in Geo(X) such that 7, — v in C([0,1]; X). By continuity of
distance and the characterization of Geo(X), we get v € Geo(X). =

(P.47) Remark If (X,d) is Polish, then C(]0,1]; X) is Polish as well.

(P.48) Notation Given ¢ € [0, 1], we denote with e; : C([0,1]; X)) — X the evaluation

map, namely

(P.49) Definition We call action the functional Ay : C([0,1]; X) — [0, +00] such that

Jol/PPact it € AC*([0, 1]; X),
Az (y) = { .
+00 it v € C([0,1]; X) \ AC?%([0,1]; X).

One can prove that A, is lower semicontinuous.

(P.50) Lemma If v € AC?*([0,1]; X), then vy is 5-Holder.
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Proof. If x,y € [0,1] such that x <y, one has, by Holder’s inequality,

o) < ["1ae = [ vealioet < ([ xww> (/rﬂdﬁ)

d((z),7(y)) < A3 (y)|z — g2

If y < x the argument is analogous and the result follows. =

SO

(P.51) Lemma Let v € AC([0,1]; X). The following facts are equivalent:

Proof.
(a) = (b) If v € Geo(X), |7'| = I(7y) = d(7(0), (1)), so

1
) = [ @008 = 2 0)9(0)
(b) = (a) Using Holder’s inequality, we can write

L((0),1(1) < 2 </VWM> < [ Wrac = ) = #6005 0)

SO

and by the fact that Holder’s inequality holds as an equality, |7/| has to be a constant
up to a negligible set. m

(P.52) Definition A metric space (X,d) is called geodesic if for every x,y € X there
exists v € Geo(X) with v(0) =z and v(1) = y.

(P.53) Notation Unless otherwise specified, we denote a curve T : [0, 1] — P(X) such
that Y(t) = p, where {u:},c (o, iIn P(X), with

we [0,1] = P(X).
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(P.54) Definition Consider a curve y; : [0,1] — P(X). We say thatn € P(C([0,1]; X))
is a lifting of p, if for every t € [0,1] one has

(6t)#77 = Ht-

(P.55) Proposition Consider a curve p; : [0,1] — P(X). If there exists a lifting
n € P(C([0,1]); X) of p, then u; is weakly continuous.

Proof. Consider t € [0,1] and (t5) in [0,1] such that ¢, — ¢. First of all, given
v € C([0,1]; X) and (v5,) in C([0,1]; X) such that v, — ~ in C([0,1]; X), for every
s € [0, 1] we have

les(ym) = es(M)] < Jm(s) = ()| < [lvm — Voo

so ey is continuous. In particular, given f € Cy(X), for every v € C([0,1]; X)

li}ILIl flew, (7)) = fle(7)).

Observing also that | f(es, (7)) < ||f]le € L*(C([0,1]; X),7n), so, applying the dominated

convergence Theorem, we obtain
lim/ fduy, —lim/ f(z)d(ey,)un(x) =
hJx hJx

= lim et d = et(y))d = dpg,
m o e / P CCNTC) | s

hence p; is weakly continuous. m

The following is a variant of the classical Ascoli-Arzela’s Theorem.

(P.56) Theorem If F C C([0,1]; X) is such that sup Ay < +oo and there exists

yeF

D C [0,1] such that D = [0,1] and for allt € D

() v e F}

is compact in X, then F is compact in C([0,1]; X).

Proof. See [1, Theorem 10.3]. =

We will need the following result.
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(P.57) Theorem (random Ascoli-Arzeld) If F C P(C([0,1]; X)) is such that

sup / Asdn(y) < 400
neF Jo(o1x)

and there exists D C [0, 1] such that D = [0, 1] and, for allt € D, {(e;)yn:n € F} is
tight in P(X), then F is tight in P(C([0,1]; X)).

Proof. See [1, Theorem 10.4]. m






Chapter 1

Static representations

1 The Monge problem

Contrary to what usually happens, we want to start with an example to understand,
in an intuitive but physical way, the problem we would then like to formulate in an

abstract environment.

(1.1) Example Consider a box filled with Spectre tiles.

Figure 1.1: A spectre tile (picture from [54]).

Our goal is to make a complete tessellation of the floor using Spectre tiles, spending
as little effort as possible. In other words, we have to decide which is the best position

for each tile in order to minimize the effort to transport it from the box to the floor.

More details on Spectre tiles can be found in [63]. However, the above example is a
modern reformulation of Monge’s original idea that can be found in [47]. The essential
element is the following: seeking the best function to transport each mass unit from the
initial configuration to the final one.

Once we have intuitively understood the problem, we are now ready for the general

and abstract definition. We specify that we will only deal with the case of measures

43
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with finite and equal mass: in other words, if (X, dx), (Y, dy) are two metric spaces, we
will only consider the case of u € M, (X), v € M, (Y) such that u(X) = v(Y) < +o0.
Without loss of generality, we will also consider only normalized measures, namely

pePX),vePY).

(1.2) Definition Let (X,dx),(Y,dy) be two metric spaces, p € P(X),v € P(Y) and
c: X xY — [0,00] a Borel function called cost function. In the so-called Monge

(optimal transport) problem we look for

inf {C’M(T) = / c(x, T(x))dp(z) : T : X — Y Borel, Tyup = 1/} .

In particular, we call transport map every T : X — Y Borel such that Typ = v and

optimal map every minimizer of the above problem.

Notice that we only work with finite costs: our goal is, in fact, to apply the general
theory to the case in which the cost function is the squared distance, as we will see
from Chapter 3. To better comprehend, also quantitatively, the Monge problem, let us
analyze a very simple example in which we can solve the problem explicitly. From a
physical point of view, the idea is very trivial: the best way to transport the mass of a

rod in itself is to not move anything.

(1.3) Example Consider X =Y = [0,1], equipped with the FEuclidean distance,
p=v=L[0,1] and c: [0,1] x [0,1] = [0, 00| such that

c(x,y) = |z —yl
In this simplified setting, the Monge problem reads as
1
inf {C#(T) = / |z —T(z)|dx : T : X — Y Borel, Ty = V} :
0
Given any B € %([0,1]), we have
Typ(B) = w(T(B)) = LT (B))

and

v(B) = L(B),

so the constraint can be rewritten as L'(B) = LT '(B)). In other words, every

transport map must be a Borel, volume-preserving function. Observing that for every
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transport map C,(T) > 0, we directly have
inf{ /|a:— z)ldr : T : X — Y Borel, T#M—V}ZO.
Combining the fact that I1d obviously satisfies the constraint and C,,(Id) = 0, we obtain
min{ / |z —T(x)|dx : T : X — Y Borel, Tyt = } = 0.
In particular, by the fact that
/|x— z)ldr =0 <= T(z) =z a.e. in [0, 1],

we also get that 1d is the unique optimal map in L°([0,1]).

Unfortunately, the Monge problem can be ill posed, as we can see in the following

example in which the domain of the problem is the empty set.

(1.4) Example If y = 6,, for some xo € X, then for each B € B(Y)
Ty020(B) = 02y (T™(B)) = 01 (B)-
So if v € P(Y) is not a Dirac delta, there does not exist any transport map.

By the innate fallacy of Monge’s formulation, the need for a different definition

arises.

2 The Kantorovich problem

The aim of this section is to present and analyze the reformulation of the optimal
transport problem carried out by Kantorovich.

In the same way as in the previous section, we start our discussion with an intuitive,
but physical, example to understand the basic idea under the abstract formulation that

we will later see.

(1.5) Example Suppose that in the province of Brescia there are xy,...,x, mills and
Y, .., Ym bakeries. Every mill produces p; flour and every bakery needs v; flour. If we

call c(z;,y;) the unit transport cost from the mill x; to the bakery y; and m;; the flour
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transported from the mill x; to the bakery y;, the global transport cost is

> clwi, yy)mij.

n
=1j=1

)

Our goal is to minimize the cost by selecting the best way to transport all flour from the

mills to the bakeries. Clearly, m;; has some constraints to respect:

o the quantity of flour that came out from each mill must be equal to the sum of the

amounts of flour transported from the aforementioned mill to each bakery,

o the quantity of flour received by each bakery must be equal to the sum of the amounts

of flour transported to the aforementioned bakery from each mill,
o the flour transported must be a positive quantity.

In other words,
n m
Zﬂij =Vj, Zﬂ-ij = i, mi; > 0.
i=1 j=1

In the previous example, a new actor enters the scene to replace Monge’s transport
map. It is the amount of mass transported from the starting space to the target space.
In order to relax the problem, following the idea of Kantorovich seen in [34], we use this

new way to define the constraint.

(1.6) Definition Let (X, dx), (Y, dy) be two metric spaces. Given u € P(X),v € P(Y),
we call T'(u, v) the set of m € P(X xY') such that for all A € B(X), B € B(Y) one has

(1.7) T(AxY) = u(A), 7(X x B) = v(B).

We call transport plan from p to v every m € I'(u, v).

Physically speaking, m(A x B) represents the mass, initially in A, sent in B.
One of the main advantages of using a transport plan instead of a transport map is

the good shape of I'(u, v), as shown in the following.

(1.8) Proposition Let (X,dx),(Y,dy) be two metric spaces. If n € P(X) and v €
P(Y), then I'(u,v) is not empty and convez.

Proof. First of all, we have to remember that every measure in P(X x Y') is uniquely

determined by its value on Cartesian products of Borel sets. Consider now the measure
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puRv:AB(X xY)—|0,1] such that for every A € Z(X), B € B(Y)
(n®@v)(A X B) = u(A)v(B),

It is straightforward that p®@ v € I'(u, v).
Now, given 7, me € I'(u, v) and A € [0, 1], for every A € Z(X), B € B(Y) one has

M+ (1= Nm)(AXY) = Am(AXY) + (1= Nm(AxY) =
= Au(A) + (1 = A\)u(A) = p(A)

and

(A1 4+ (1= XN)m)(X x B) = Am(X x B)+ (1 = \)m(X x B) =
=M (B)+ (1 = \v(B) =v(B),

so Am + (1 — N)my € T(p, v), namely I'(g, v) is convex. m

It will be useful to highlight equivalent conditions for (1.7).

(1.9) Proposition Let (X,dx), (Y,dy) be two metric spaces, i € P(X) andv € P(Y).
Consider m € P(X x Y). The following facts are equivalent:

(a) me (p,v),

(0) (px)gpm = p and (py)ygm =v.

Proof. Consider A € %(X). By the fact that py'(A) = A x X, the equivalence between
the first relations in (1.7) and in (b) follows directly. The reasoning for the second ones
is similar. =m

Kantorovich’s formulation for the optimal transport problem is the following.

(1.10) Definition Let (X, dx), (Y,dy) be two metric spaces, p € P(X), v € P(Y) and
a Borel function ¢: X XY — [0,00][ called cost function. In the so-called Kantorovich

(optimal transport) problem we look for

inf{C(w) - /Xxyc(x,y)dﬁ(a:,y) .7 ey, y)}.

In particular, we call optimal plan every minimizer of the above problem.



48 CHAPTER 1. STATIC REPRESENTATIONS

We highlight that the assumptions are the same as in the Monge problem, but, if we
compare Example (1.4) and Proposition (1.8), we understand that the Monge problem
and the Kantorovich problem in general are not equivalent: the second is always well
posed. When, in the following, we refer to the primal representation of the optimal

transport problem, we will always mean in the sense of the Kantorovich problem.

(1.11) Remark The above problem is symmetric: switching coordinates, we can pass
from T'(u,v) to T'(v, p).

Once given the abstract definition of the problem, we now tackle the problem of the
existence of optimal plans for the Kantorovich problem in a Polish setting and under
the assumption of lower semicontinuous cost.

Let us start proving the weak lower semicontinuity of C': we use inf-convolution of

the cost and we pass to the limit thanks to the monotone convergence Theorem.

(1.12) Proposition Let (X, dx), (Y, dy) be two metric spaces, p € P(X) andv € P(Y).
If c: X XY — [0,400] is a Borel lower semicontinuous function, then {m — C(m)} is

weakly lower semicontinuous in P(X x Y).

Proof. Consider (Z,c), the inf-convolution of the cost. We already know that (Z,c) is a
bounded from below increasing sequence of Lipschitz functions and Z,c * ¢ pointwise.
Now, given (m,) in P(X x Y) and 7 € P(X x Y) such that m, = 7 in P(X x Y),

by weak convergence

lim Iyedm, = / Iycdr,
XxXY

oS xxy

but, from the fact that Z,c < c,

lim inf C'(7,,) = lim inf / cdm,, > lim inf / Iycdm,
" " XxY " XxY
and the conclusion follows, by the monotone convergence Theorem, passing to the limits

ash = +00. =

Although the proof of the weak lower semicontinuity of C' is done in a general
metric setting, to prove the compactness of I'(x, ) we need to strengthen the structure
restricting to Polish spaces: we will use Ulam’s Lemma and Prokhorov’s Theorem to

demonstrate the following result.

(1.13) Proposition Let (X,dx), (Y,dy) be Polish spaces, p € P(X) and v € P(Y).
The set I'(u,v) is weakly compact.
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Proof. Let us start by saying that the marginal conditions

/ odp = / pdm, Yo € Cyp(X),
X XxY

/ Ydy = wdm, Y € Cy(Y)
X XxY

imply that (i, v) is weakly closed. By Ulam’s Lemma, for every € > 0 there exist
K C X,K CY compacts such that u(X \ K) < 5 and w(Y \K) < 5. Thus,

(X xY\KxK)<7(X\K)xY)+7(X x (Y\K)) <e,

thanks to the marginal conditions, implies that I'(u, v) is tight. The conclusion follows

from Prokhorov’s Theorem. =

We are now ready to prove the existence of optimal plans for the Kantorovich problem

using the direct method of the Calculus of Variations.

(1.14) Theorem Let (X,dx),(Y,dy) be Polish spaces, p € P(X), v € P(Y) and

c: X XY — [0, +o0[ lower semicontinuous. There exists an optimal plan.

Proof. Consider () in I'(i, v) such that

lim C = inf C(m).

lll;n (ﬂ-h) WE{“I%M,V) (ﬂ-)
By Proposition (1.13), we know that I'(u, v) is weakly compact, so there exist (7, ) in
['(u,v) and 7y € I'(u, v) such that 7, — my in I'(u, v). So, by Proposition (1.12),

C(mo) < liminf C(m,, ) = inf C(m),
k wel(p,v)

then
C(mp) = min C(m)

el (p,v)

and the result follows. =

Before proceeding further, let us analyze in more detail the relationship between
Monge’s formulation and Kantorovich’s one. Given a transport map 7', we can define

the associated transport plan
T = (Id7 T)#:u
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where (Id,T) : X — X x Y is the function such that (Id,T)(z) = (x,T(z)). By the

change of variables formula, it follows

@W=AywwWMﬂw@w=

= [ (o @) @)dutz) = | el T(@)duta) = C,(D)

X

In particular,
inf C(m) <C,(T)

el (u,v)
and passing through the infimum with respect to T,
inf C(m) < iI%f C.(T).

m€l(p,v)

transport map

Clearly, the inequality can be strict because the domain of the Monge problem can be
the empty set. In an attempt at completeness, we highlight that under some regularity

assumptions, the two formulations can be recovered as equivalent.

(1.15) Theorem (Pratelli) Let (X,dx),(Y,dy) be Polish spaces, u € P(X) non-
atomic, v € P(Y) and ¢ : X X Y — [0, +00| continuous. It holds

L in C(m) = 1IT1f C.(T).

transport map

Proof. See [56]. =

(1.16) Remark In the following chapters, we will understand the particular importance

of quadratic distance cost, namely

c(z,y) = d*(x,y),

which fully fits into the theory we have presented in this section since it is a continuous,

positive and finite function.

3 The entropy functional

In Information Theory, entropy means the amount of information contained in a

message and transferred through a communication channel. The first study is due to
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Claude Shannon in 1948: the interested reader can find further details in the original
article [62].

The most interesting aspect, that we underline just intuitively, is that, under some
structural assumptions, there is a link between Shannon’s entropy and Boltzmann’s one:
the phrase "when disorder increases, information is lost" is a good summary. Further
information on this topic can be found in [25] or in [31].

Coming back to us, in order to introduce the entropy functional, we first need three

technical results.

(1.17) Proposition Consider a metric space (X,d) and p,v € R(X). If v < p, then

Z—” >0v-a.e inX.
"

Proof. We already know that j—: >0 p-a.e. in X, so g—z > 0 v-a.e. in X. Now, consider

A:{a:eX:Z:(x)zo}.

By contradiction, if v(A) > 0, we obtain
dv
O<1/(A):/d,u:0.-
Adp

(1.18) Proposition Consider a Polish space (X,d) and R : B(X) — [0, +00] a Borel
o-finite measure. There exists a Borel function W : X — [0, +oo[ such that

/ e WdR < +o0.

b

Proof. By the o-finiteness of R, there exists (A,) in #(X) a sequence of disjoint Borel
subsets of X such that

X = A, VneN:R(A,) < +oo.
n=0

If we take W : X — [0, +-00[ such that

ifx e Ao,

1
—log gy

1 .
—logm 1f:C€An,
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then

e 0 1 © 1
e WdR = e WdR = dR< S — =2 < 400
/X 2 A Z:‘a a, 2"(R(An) +1)  — 7;)2”

n

and the result follows. m
(1.19) Proposition Consider a Polish space (X,d). If R € R, (X), then R is o-finite.

Proof. First of all, there exists  C X at most countable such that Q = X. Now,
since R € R4 (X), it is locally finite, so for every ¢ € @ there exists U, € #(X), a
neighborhood of ¢, such that R(U,) < +o0. Up to substituting U, with int(U,) C U,

we can assume U, to be open. Clearly,

Uu,cX.
qeQ

Now, if z € X, there exists (¢,) in X such that ¢, — z. In particular, there exists
N € N such that for every n > N we have z € U,,, so
xXc|yu,
q€eQ

By the fact that () is at most countable, the result follows. m

We can now proceed to provide the definition of the entropy functional: another
name, by which it can be found in literature, is Kullback—Leibler divergence. This last
name comes from Statistics, where divergences are particular statistical distances. It is

not, actually, a distance.

(1.20) Definition Consider a Polish space (X,d), R € R4 (X), a Borel function
WX — [0, +o00[ such that

/ e WdR < 400,
X

Ry = We*WR € P(X) and o € P(X) such that

/ Wdo < +o0.
X

We call (Boltzmann—Shannon) entropy of o relative to R the extended real number

H(U|R):HP(U|RW)—/XWda—1og </XerR>,
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where
fX dRw 10gd dRW if o < Rw,

400 otherwise.

HP(o | Rw) = {
In particular, we define the function Hg such that

Hg(c) = H(o | R).

Even if the previous definition may seem complex, every time entropy is well defined,

with some simple computations it turns out
H(o | R) = H?(o | R).

Let us underline that if ¢ < R,

/log< >dR /log<gg>da.

(1.21) Proposition The previous definition is well posed.

Proof. Consider W’ : X — [0, 400 another Borel function such that
/ e dR < +o0, / W'do < +o00.

b X
First of all, if H(o | R) is well defined, then H(o | R) = H?(o | R), so

HP(o | RW)—/ Wdo—log (/ e_WdR> = H"(o | RW/)—/ W'do—log (/ e_W/dR> .
b X X X

Combining this fact with Proposition (1.17), Proposition (1.18) and Proposition (1.19),

the result follows. =

(1.22) Proposition Consider a Polish space (X,d) and R,o0 € P(X). Then the

entropy is well defined and, in particular,

(o |R) = % log (%) dR if o <R,
+00 otherwise.
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Proof. Consider W = 0. Then

/ eWdR =1 < 4o, / W'do =0 < +o0.
X X

In particular, Hg is well defined on P(X) and H(o | R) = H?(o | Rw). By the fact that
Rw = R, the result follows. =

We will need to consider, in the following, the strictly convex function & : [0, +00] —
[—2, +oc] such that

xlogx if x >0,
h(z) =
0 it x =0.

Figure 1.2: The graph of the function h.

We collect in the following Proposition the main properties of the entropy functional.

(1.23) Proposition Let (X, d) be a Polish space and R € R, (X). The following facts
hold true:

(a) if R € P(X), then Hg is positive,
(b) Hg is convex. In particular, where Hg is finite, it is strictly conver,

(¢) if R e P(X), then Hr(o) = 0 if and only if o = R.
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Proof.

(a) If o is not absolutely continuous with respect to R, Hg(¢) = +00 > 0. Otherwise,

by Jensen’s inequality,

0= h(1) = h (R(lx)ao()) iy (R(lx) /X %dR) < R(lX) /X h (;ﬁ) dR = Hy(0).

(b) Let 01,09 € P(X) and X € [0, 1]. If at least one, between oy and o9, is not absolutely

continuous with respect to R, either is Aoy + (1 — Aoz, so
Hr(Aoyp + (1 — N)og) = +00 = AHg(01) + (1 — A\) Hr(02).

Otherwise, if 01,09 < R, so is Aoy + (1 — A\)oy and, by the convexity of h and the

linearity of Radon—Nikodym derivative,
d
Hr(Ao1 4+ (1 = N)oy) = / h (dR (A1 + (1 — /\)02)> dR =
b's

d0'1 dO'Q
= | h{A—=+(1-N)—7=]dR <
Jor (g -0 s

< MHg(01) + (1 — X)Hg(0).

In particular, the strict convexity of h gives us that also Hg is strictly convex where it

is finite.

(c) If Hr(0) =0, 0 < R. By the fact that

do do do
0=H(o Rz/(log()—-i—l)dR
(7 [R) x \dR dR dR

and the fact that for every x > 0, xlogx — x4+ 1 > 0, where the equality holds if and

only if z = 1, we obtain j—g =1,s00 =R
Conversely, if ¢ = R, in particular 0 < R and g—g = 1. A straightforward computation

then provides

Hi(o) = /XOdR “0.m

The following variational representations will be fundamental.

(1.24) Lemma Consider a metric space (X,d), R € Ri.(X) and o € P(X) such that
Hgr(0) is well defined. The following facts hold true:
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(a) it results

H(o | R) =sup {/ pdo — log (/ e“"dR) : ¢ : X — R bounded and Borel} ,
X X

(b) it results

H(o | R) :sup{/xgpda—log (/Xe‘de> tp € Cb(X)},

(c) it results

H(a!R):sup{/ gpda—log(/ e“’dR):gp:X—>]RBorel,/e‘de<+oo}.
X X X

Proof.
(a) Denote with

M = sup {/ wdo — log </ e“odR) : ¢ : X — R bounded and Borel} .
X X

Consider initially the case 0 < R. For every ¢ : X — R bounded and Borel consider
¥ : X — 10, +oo[ bounded and Borel such that i) = e?. If

/ YdR = +o0,
X

/ pdo — log (/ e“"dR) = —00
X X

and there is nothing to prove. Conversely, in the case

then

/ YdR < +00,
X

by the fact that ) > 0 R-a.e. in X, we can define the measure R’ € P(X) such that for

every B € B(X)
, B 1
R'(B) = R /Bq/;dR.
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By uniqueness of Radon-Nikodym derivative,

do _dodR' _do
dR ~ dR'dR ~ dR' [, ¢dR’

SO

[do (do\ 1 do %\ -
Hi|R) = /x R 8 (dR> =T wdR/ RV <dR’ Ix WR) "=
1 do do 1
:fXWR/ Wl <de> »dR +f @DdR/ dR,¢log¢dR+

e ;L/JdR / RV (/ ¢dR> dR =

—1 R+ —1 R — —l R]dR =
/dR’ og <dR’>d /dR’ og ¥d / og (/de )d

—H(J\R/)—l—/)(logwda—log(/)(wdR) >
Z/Xloggbda—log (/XdzdR> :/Xgoda—log (/Xe“"dR).

In particular,

H(o|R) > M.

If H(o | R) < 400, consider (p,,) such that for every n € N\ {0}

oLl )
/ ( >dR H(o | R) < 400,

67

[ () - [ (o) - vn ([ v

do do
dRw + W1l 21 (x.0)
« dRy (dR) wH Wiz o

< 400,

First of all,

and, since z(logz)~ < 1

+ |log </ e_WdR> <
b's

57
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S0, log( ) € L'(X,0). In particular, 42 log( ) € L'(X,R). By the fact that,

do do do
ﬁcpn deog (dR>Rae in X,

d—a —lo do d—alo do
dR &\ R drR ® 4R

by the dominated convergence Theorem, we have j—;gpn — g—; log (g%) in L'(X,R). In

€ L'(X,R),

the same way, e*" — 9% in L'(X,R). In particular, from

M > / pndo — log (/ e‘p”dR> ,
X X

using the convergence properties of Lebesgue spaces, the continuity of logarithm and

the dominated convergence Theorem, we obtain

Mz/log (ZR) do —logo(X)=H(o | R).

Instead, if H(o | R) = 400, using the same argument as before, we can find a sequence
(i) of positive Borel functions such that ¢,, — log ( ) pointwise. As before, applying

Fatou’s Lemma in place of the dominated convergence Theorem,

+oo=H(o |R) < M.

If o is not absolutely continuous with respect to R, clearly H(o | R) = 400 and
there exists S € Z(X) such that R(S) = 0 but ¢(S) > 0. Consider the sequence (¢,,) of

Borel functions such that

n ifxels,
on(T) =
0 ifzeX\S,

then

M > lim (/ ondo — log (/ e‘P"dR>> = lim </ ndo — log </ 1dR>> = +o00.
" X X " s X\S

(b) Tt follows from (a) and the density of Cy(X) in L'(X,R).
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(¢) Clearly, using (a),

H(0|R)§sup{/ goda—log(/ e¢dR>:@:X—)RBorel,/e“"dR<+oo}.
X X X

Conversely, if H(o | R) = +o0o0 we are done, otherwise we are in the case 0 < R and, in

the same way as is (a),

H(0|R)zsup{/ gpda—log(/ e“”dR):gp:X—>RBorel,/e‘de<—|—oo}.-
X X X

We want now to prove that the entropy functional is convex and lower semicontinuous:
this will be crucial in order to apply the direct method of the Calculus of Variations in

the following section.

(1.25) Proposition Consider a metric space (X,d) and R € R (X). The function
{(6,R) — H(o | R)}, when it is well defined, is convex and weakly lower semicontinuous.

In particular, the function Hg is weakly lower semicontinuous when it is well defined.

Proof. First of all, by Lemma (1.24),

H(0|R):sup{/xg0da—log (/XewdR> :goEC'b(X)}.

Fixed ¢ € Cy(X), the function

{(U,R)H/Xgoda—log (/;%m)}

is linear, hence convex, and weakly continuous, so we also obtain the desired convexity

and lower semicontinuity of {(o0,R) — H(c | R)}. =

4 Primal Schrodinger problem

In 1931, Erwin Schrodinger proposed in [61] an interpolation problem on Brownian

particles that would later be called the Schrédinger problem.

(1.26) Proposition Consider a Polish space (X,d), R € R (X x X) and po, p1 €
P(X). Suppose there exists a Borel function B : X — [0, +o00[ such that

/ e B@O=BWIR(z, ) < +o0, / B(z)dpo(z) < +oo, / B(z)dp (z) < +o0.
XxX X X
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Then Hg is well defined on T'(pug, p11) by

Hg(c) = HP(0 | Ryy) — /X Bdy — /X Bdy, — log ( /X e‘WdR>.

Proof. Consider W (z,y) = B(z) + B(y). By assumption,

/ e WdR < +o0
XxX

and if m € I'(po, p11), using the change of variables formula,

de:/ B(ﬂ?)dﬂ(:v,y)vL/ B(y)dm(z,y) =/ Bduo+/ Bdyy < +o0,
XxX XxX XxX X X
so the result follows. m

Having shown that entropy is well defined on I'(ug, 1), under a small technicality,

we can give the abstract formulation of the problem.

(1.27) Definition Consider a Polish space (X,d), R € R (X x X) and po, p1n € P(X).
Suppose there exists a Borel function B : X — [0, 400 such that

/ e B@O=BWGR(x, ) < +oo, / B(x)dpo(x) < 400, / B(z)dp(z) < +oc.
XxX b's b's
In the so-called Schrodinger problem we look for

inf {Hg(7) : 7 € T'(p0, p11) } -

The goal of the section is to prove, under some technical assumptions, existence,
uniqueness and also a certain structural formula for the solution of the Schrédinger
problem: the proof is an expansion of the one contained in [28]. As regards the first
part of the statement, we used the direct method of the Calculus of Variations to prove
existence, uniqueness descends directly from the strict convexity of the entropy functional
and the structural formula comes from a Corollary of Hahn—Banach’s Theorems. The
second part gives a realistic case in which the first part is applicable, two functional
inequalities tied to the solution of the problem and a theoretical information on the latter:
the proof is, somehow, a direct computation and relies, also, on Du Bois-Reymond’s

Lemma.



4. PRIMAL SCHRODINGER PROBLEM 61

(1.28) Theorem Consider a Polish space (X,d), m € R (X) and R € R (X x X) such

that (p")4R = (p?)gR=mand m@m < R< m®@m. Let pgp = gom, 11 = o1m € P(X)
and

Py={x € X :po(x) >0}, P ={x € X :p(x) >0},

defined up to m-negligible sets. If there exists a Borel function B : X — [0, +00o[ such
that

/ B@)=BW R (x,y) < +oo, / x)dpo(x) < 400, / x)dp(x) < 400,
X><X

then the following facts hold true:

(a) if H(po ® p1 | R) < 400, then there exists a unique minimizer vy of Hg in I'(po, tt1).

In particular, there ezists two Borel functions f,g: X — [0, +0o0[, unique m-a.e. in
X up to a rescaling {(f, g) — (cf, %)} with some ¢ > 0, such that

7= (f®@g)R,

(b) if 00,01 € L>®(X, m) and there exists ¢ > 0 such that R > em @ m in Py x Py, then
H (o ® py | R) < 4+o0. In particular, f,g € L'(X,m) N L®(X,m) with

| 01| oo (x,m)
C

ooz,
1 e el xmy < T o 9] o <

and 7y is the only transport plan of the form (f' ® ¢')R for some Borel functions
9 X = [0,400].

Proof.
(a) First of all, by Proposition (1.13), I'(uo, 1) is weakly compact. Furthermore, by
Proposition (1.25), Hg is weakly lower semicontinuous, so there exists v € I'(po, 111)
such that

Hgr(v) = min Hg(m).

WEF(H(),Ml)
In particular,
Hg(7y) < Hr(pto ® p1) < 400,

so 7 < R and, using Proposition (1.23), Hg is strictly convex where it is finite, so the

uniqueness of 7 comes.
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For the second part of the statement, let us underline that the uniqueness property
of (f,g) comes from the definition of f ® g. In particular, it is sufficient to prove the

existence of an appropriate pair (f, g).

Now, remembering that m ® m < R < m ® m, let us prove that

d
£>Om®m—ae in Fy x P.

By contradiction, suppose

R((PoxPl)ﬂ{xeX ;ig 0}>>0.

Given A € |0, 1], using the convexity of h,

d dlpo®p1) _ dy\\ _ p (&
50 BB () () s

and as A — 0T

h(g%—")‘(%_%))_h(‘%) N\ —oo R-a.e. in (Poxpl)ﬂ{xEX:mzo},

A dR

so by the monotone convergence Theorem

. Hg (v + Ao @ p1 — 7)) — Hr ()
im
A0+ A

d
:—OOiIl(P()XPl)ﬂ{LL’EX dg O},

but the minimality of v ensures

: d
Hr(v+ A (o ®@ p1 — 7)) — Hr () > 0in (POXPl)ﬂ{xEX:dIZ:O},

because v+ A (o @ p1 — v) € I'(po, 1), so using the sign permanence Theorem, it must
be

y Hg (v + Ao @ pn — 7)) — Hr ()
im
A—0t A

d
>0 in (PoxPl)ﬂ{xeX dg 0},

that provides the contradiction.

Now, consider the set

U={ueLX xX,7): (p")uuwy) = (p*)4(uy) =0}
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Take uw € U and ¢ € }O S { Observing that (1 4 eu)y € I'(uo, 1) and UZ% 18

7 lullzoe (xx x )

well defined R-a.e. in X x X, one has

hl(l+eu = 1+ecu)—log | (1+cu dR =
H <( )dR> L1(XxX,R) XxX( >dR ¢ ( )dR
dry dry dry
= 1 — log (1 1 1 R <
/X><X( +5u)dR og (14 eu) + ( ~|—6u)dR og(dR>|d <
dy
< (1 +eu)——=log (1 + cu)|dR+
XxX dR

<,
XxX

S/X (1+€u)]10g(1+6u)|d7—|—/x (1 +eu)

xX xX

dry dry
1 1 R
( +5u)dR Og(dR)‘d ,

dy
1 d

< (1 + eu) log(1 + eu)|| oo (x xx,7)+

dry
+ ||1 +5u||L°°(X><X,'y)/ log <dR> ’d’y <

XxX
< |1+ eu) log(1 + ew) || zoe (xx x.)+
LA <d7>
dR dR

so h ((1 + cu) Zg) € L'(X x X,R). In the same way as before, using the monotone

convergence Theorem,

1 Hr((L+eu)y) — He(y) :/ D <1og (Zg) +1> QR

< 400,
(X xX,R)

+ |1+ eul| Lo (xxx,7)

e—0t IS

Using again minimality of v and the sign permanence Theorem,

i (e (i) +1)
log +1)drR>0.
/Xxx dR dR

In particular, since

we have
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Up to switching v with —u, we obtain

dry <d7>
u—log | —= | dR <0,
/XxX dR dR

d d
/ ul log <7> dR =0, for every u € U,

then

dR

or, in other words, log (g—g) € ~U. Consider the subspace of L'(X x X,7)
V= {f € Ll(X X X77) : f = ¢@¢790 € LO(XamLPO)aw € LO(X>mLP1)} :

It is sufficient to prove that U C V.

Let us start showing that V' is closed in L*(X x X, ). To show this, we can initially

observe that

feV e (feL'(X xX,y) and f(z,y) + f(2',y) = f(2,9) + f(2,y)
formamemem-ae. (r,2,y,y) € Py x Py x P; x Pl).

This comes directly as follows: if f € V, clearly f € L'(X x X,v) and there exist
o € L°(X,m|R),v € L°(X,m| P,) such that

flz,y) = v(z) +¥(y), m@m-ae. (r,y) € Fp x P
f@'y) = o@) + 1), m@mae. (2,y) € Py x P

so, summing both sides,

flx,y)+f(,y) = fz,y )+ f(2,y), m@memem-a.e. (r,2',y,y) € Pyx Pyx Py x P;
conversely, if f € L'(X x X,v) and

flx,y)+f(,y) = fz,y )+ f(2,y), m@memem-a.e. (v,2',y,y) € Pyx Pyx Py x Py,

by Fubini’s Theorem, the function {z — f(z,y)} (resp. {y — f(x,y)}) is Borel for
m-a.e. y € Py (resp. m-a.e. © € ) so, setting o(x) = f(x,y), ¥(y) = f(2',y) for some
admissible (2/,y') € Py x Py, it results f = ¢ + 1, then f € V. By the fact that the

condition

flx,y)+f(@ ) = flx, )+ f (2 y), mpmemem-a.e. (r,2',y,y) € Ppx PBpx Py x P
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is stable with respect to L'(X x X,~) convergence, we can affirm that V is closed in
LMX x X, 7).

Let us now prove that V4 C U. If 4 € L>=(X x X,~) \ U, one of the marginals of
@y is non-zero. If it is the first marginal to be non-zero, by the fact that (p;)xy = o,
for every Borel function 9 : X — R, using Corollary (P.17),

/X o p)(wp)d(@) (a1 = / I(a)d(an) (,y) =

XxX

:/X Xq?(x)a(w,y)d’y(l’,y):

- [ ([ ot st} duote) -

:/Xq?(a:)fo(x)duo(x):/ V(z)d( foro) (),

X

where

fo

=
!
T

()i, y)dy.(y),

that is, by Proposition (P.8), (p')4(@y) = fopo. In particular, fo &0 = fyop; € V and

/X i(fo @ 0)dy = /X fo o pld(iny) = /X fod(p") () = /X f2dpio > 0,

sou ¢Vt

We can finally prove that *U C V. If f € L'(X x X,~) \ V, by the fact that V is
closed, applying [9, Corollary 1.8], we can find u € (L'(X x X, 7)) = L>*(X x X,~)

such that for every f eV
/ fudv =0
X

and

(1.29) / fudy = 1.

In particular, uw € V* C U and, by (1.29), f ¢ *U.

(b) First of all, using our assumptions,

/ e PO=BWd(me@m)[(Py x P;) = / e PO d(m @ m) <
XxX PQXPl

1 / ¢~ B@-BO)GR <
C P0><P1

IN
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< 1/ e B@-BW(JR < 0.
CJxxx

Now, we know that g, 3 < m, 80 g @ py K m@m. If A€ Z(X x X) such that

1
[ e B@-Bwd(m@m)| (P x P,

) / e~ BB (m & m) = 0,

by strict positivity of the integrand, it must be (m ® m)(A) = 0, so

o~ B(@)-B(y)

[x e B@-BWd(m @ m)|[ (P x P) (

mem <K m®m).

In particular,

o~ B(@)~B)

(ko © ) < [ e B@-BWwd(m @ m)| (P x Pl)(

mem)|(Pyx P)

and, from this, we have

¢~ B(@)~B(y)

HP
(Mo ® | [xox € B@-BOdm@m)|[ (P x ) (

mem)| (P x P1)> =

d(po ® pi1)
= /X log “B(z)-B(y) d(NO ® Ml))

x X d (fXXX e_B(x)—eB(y)d(m ® m) L(PO X Pl) (m X m) L(PO X P1)>

that is

» e—B(@)-B(y)
fio @ fiy | [eox € B@-BWdmem)[ (P, x P))

d,uo / d,ul
= 1 d(po ® p1) + 1 d(po @ pu1)+

e~ B(@)—B(y)
- /X Xlog <f eB(w)B(y)> dm@m)|(F x Pr)d(po ® pu) =
x XxX

(mem)| (P x P1)> =

— [ Yog(aln)duo+ [ Yog(aln)du+ [ Bduo+ [ Bl
X X X X
+ log (/ e_B(m)_B(y)d(m & m) L(PO X P1)> < +OO,
XxX
hence, using [2, Lemma 7.2,

H(po ® 1 |R) =
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» ¢—B(@)-B(y)
— o @ fiy | fXxX e~ B@-BWd(m @ m)| (P x P)

(mem)|[ (P x P1)> +

d e~ B(@)—B(y) .
<fX><X e B@-BWd(m @ m)[ (P, x Pp) (m @ m)| (F 1)>
" AxX 8 dR d(po @ 1) =
X
= H" | j1o ® p11 | o—B(@)-B(y) e w4
T T B & WP % P
+ 0 o .
oo G w7 100

(m
m®m P X P
—|—/ log<( 0 1)>d,u0®,u1 < +00.
XxX

For the second part of the statement, consider o € T'(uq, pt1) such that o = (f' @ ¢')R
for some Borel functions f,g : X — [0,+o00[. Take ¢ € C(X). By the fact that
(P ((f' ® ¢')R) = po = oom, (p*)4R = m and using Corollary (P.17),

/XCQOdm:/CdMO /cd (f © )R) =

- @ egr= [ drmgm-

_ /X ((@)f(x) ( /X g’(yme(y)) dm(z).
/}((f’(x) (/Xg’(y)dRm(y)> —Qo(x)> ¢()dm(z) = 0

and by Du Bois-Reymond Lemma’s,

SO

7(2) ( / g'(y)d&(y)) _ (&) < 400 mae. o€ X,

In particular, f’ vanishes m-a.e. in X \ Fy. Since, by assumption, R, > cm in P; for

m-a.e. x € Fp, taken a suitable x € P,

C”g/HLl(X,m)—/ g'd(em) < /ng
X

so ¢ € L'(X,m) and

f/([)?) < ||Q0HLO<>(X,m) < ||Q0HLOO(X’m)
= e gdR. el
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By the fact that f’ vanish m-a.e. in X \ Py, we obtain

o]l oo (x,
||f/||L°°(X,m)||g/||L1(X7m) S %

Using p? in place of p', we obtain also

lo1lze=x,
||f/||L1(X,m)||g/||Loo(X7m) < %

In particular, log f" and log ¢’ are bounded from above.

By the fact that Hg is well defined on I'(p, 1),
/ (log f'®logg')do = H(o | R) > —o0
XxX

so log f o p,logg o p* € LY (X x X,0). Now, as already done before, using also the

fact that v and o have the same marginals,

o HO+A0—0)|R) ~ Ho|R)

A0+ A

:/ (f®g—f @) logf @ gdR =
XxX
= /X X(logf’ ®logg)d(y — o) =
- / log f'd(p') 4 (v — o)+
X

+ /X log g'd(p*) (v — o) = 0.

By convexity of Hg, H(c | R) < H(y | R) and the uniqueness of the minimizer for Hg

provides o =v. =

5 Comparison

We want now to analyze the connection between the static representations of the two
problems: the goal of the section is to emphasize, at least heuristically, the bond between
the two problems using their static representation formulas. What we can, preliminarily,
say is that both are interpolation problems defined as minimization problems of convex
functionals on the same convex domain. It is, however, possible to highlight a much

deeper connection between the two problems.

Consider a Polish space (X, d), m € R, (X) and, for every ¢ > 0, R. € R4 (X x X)
such that (p1)4R. = (p2)gRc =mand m@m < R. <K m @ m.
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Consider a Borel function ¢ : X x X — [0, +o00[ lower semicontinuous such that for
every x € X the function {y — c(z,y)} is coercive. Suppose that for every z € X,
{Rc}.., satisfies a large deviation principle with rate function {y — c(z,y)}, namely
for every U,C' C X, with U open and C' closed,

hmmf elogR.(U) > —1nf c(x,y), limsup elogR.(C') < —1nf c(z,y).

e—0

Fix u € P(X) such that y < m. Consider for every v € P(X) such that ¥ < m and
such that there exists a Borel function B : X — [0, 4o00[ such that

/ B@)=BW R (x,y) < +oo, / x)dpo(x) < 400, / x)dp(x) < 400,
X><X

the functionals
SW(v) = inf {eHg_(7) : m € T(p, v)}

)

and
TW () =inf {C(r): 7 €T(1,v)}.

It results
I — lim S(M — (u)’

e—0
that can be read as "optimal transport problem is the I'-limit of Schrodinger problem”.
In particular, the limit of the sequence of the solutions of (SP) is a solution of (OT). At
the moment, it is still quite a complex problem to understand which of the solutions

actually is: some works linked to this question are [21] and [4].

Let us analyze, at least intuitively, a specific example.

(1.30) Example Consider R, endowed with Euclidean distance. Given ¢ > 0, consider
R: = r%[," ® L™, where

3
1 z—y?
(,y) = ———e 1

(4mt)r

Given p,v € P(X) such that p, v < L™, the choice B = 0 guarantees the well-definiteness
of Hr. on I'(u,v). A simple computation provides
2

e do_dlpev) AL o L)),
-/ 10g<R;>d"‘/ 10g<d<u®u> d(Lr@ L) dRs >d0_

_ /log (d(,ﬁé@) do + /log (%) do + /log (W) oo

Hg

[0
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Now, as regards the first term, we recognize

/log (d(,jl;u)> do = H(olp @ v).

For the second term,

dlp®v) du dv
/1og (W) do = /log <d£” (l‘)dﬁn (?J)) do(z,y) =
dp dv
=[x (o)) dmte + [ 100 ) aotenn

so, using the change of variables formula,

/log (W) do — /log (ﬁ) du + /log <j£”n> dv = H(ulL") + Hw|C").

For the third term, observing that

| —y|?
2e

LR L =/(2me)me Re,

we can write

/log (d(ﬁdiﬁ)> do = /log ( (27?5)”ez2éyl> do =
n 1 9
= §log (2me)o(X x X) + % | — y|“do(z,y) =

n 1
=3 log (me) + 2—80(0).

Resuming,

Hg. (0)=H(olp®@v)+ H(p|L") + Hv|L") + g log (27e) + 2150(0)

[N}

and multiplying both sides by € we get
1
eHr, (7) = eH (| ® v) +eH (u|£") + e H(v| L") + gelog (27e) + 5C(o).

Passing to the limit as € — 0, on the right-hand side we expect that only the last term
survives. This provides, at least intuitively, the I'-limit mentioned above in the abstract

setting. As regards the pointwise limit, this latter is clear from the calculations we did.

To formalize the previous discussion, the interested reader has, first of all, to learn
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how to manage with I'-convergence. Further details can be found in [39], [15] and [14].






Chapter 2

Dual representations

1 Kantorovich—Rubinstein duality

The Kantorovich problem is a convex constrained optimization problem, so it admits

a dual representation. Let us, first of all, understand in what sense with an example.

(2.1) Example Consider again the situation described in Example (1.5). If buying
and selling are handled by a broker, who buys at price @; from x; and sells to y; at 1;,
to be competitive with respect to the direct selling between mills and bakeries, he must be
sure that ¢; — p; < c(x;,y;). In this assumption, the broker is interested in maximizing
the profit, that is

Z @/)jVj - Z i ;-
j=1 i=1

The abstract formulation is then the following.

(2.2) Definition Let (X,dx), (Y,dy) be two metric spaces, p € P(X), v € P(Y) and
a Borel function ¢ : X xY — [0,400[ called cost function. In the so-called dual optimal

transport problem we look for
sup {/ wdp +/ wdy}
(pp)ele (VX Y

where

We call Kantorovich potentials every maximizing couple of the above problem.

The aim of this section is to show the equivalence of primal and dual optimal
transport problems in a Polish setting with lower semicontinuous cost. The proof will

be based essentially on this Proposition.

73
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(2.3) Proposition Let (X,dyx), (Y,dy) be Polish spaces, p € P(X), v € P(Y), a
continuous function ¢ : X xY — [0, +oo[ and m € I'(u,v) an optimal plan such that

/ cdm < +o00.
XxXY

Then supt(7) is c-cyclically monotone.
Proof. See [1, Theorem 3.17]. =

(2.4) Theorem (Kantorovich—Rubinstein duality) Let (X, dx), (Y,dy) be Polish
spaces, 1 € P(X) andv € P(Y). Ifc: X XY — [0, +00[ is lower semicontinuous, then

min {C(w) = /X><Y c(x,y)dr(x,y) :m e L(p,v } = @5;1)1216 {/ odp —|—/ wdu}

If, in addition, ¢ € Lip,(X x Y), then the supremum is attained and Kantorovich

potentials are of the form (p, ¢°) for some c-concave function ¢.

Proof. First of all, by Theorem (1.14), there exists an optimal plan 7y € I'(y, ), namely
C(mp) = min C(m).

mel(pv)

Using the indicator function, we can rewrite the problem as

Consider the set
B ={(p,¥):p: X — R Borel, ¥ : Y — R Borel}.

Let us prove that for every m € P(X x Y)

() (T) = sup {/ wdu — / g0d7r+/¢dy—/ @bdﬂ}
(p,9)EeB XxY XxY

If 7 € I'(i, v), marginal conditions provide

sup {/ wdu — / gpd7r+/wdu—/ Q/Jdﬂ'} =
(,)eB XxY XxY
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On the other hand, if 7 € P(X x Y) \ I'(14, v), one of the marginal conditions fails.
Without loss of generality, we can think that (px)xm # p so there exists B € Z£(X)
such that (px)x7m(B) # pu(B). If (px)xm(B) < u(B), let ¢, = nxp. It holds

/X adti — /X ut = n(u(B) = (B x ¥)) = nlu(B) = (px)4(3))

and, letting n — o0,

sup {/ wdu — / 90d7r+/wdu—/ ¢d7r} ~+00.
(p,h)eB XXY XxXY

The case (px)xm(B) > u(B) is analogous: we just have to use ¢, = —nxs.

Now,

min C(m) = inf { / cdm+
wel (u,v) TEP(XXY) XxY

+ sup {/ wdp — / ngﬂ'-i—/ wdu—/ wdﬂ}} =
(e,p)EB XxY XxY

= inf sup / c— —¢d7r—|—/ d —i—/ du}
TEP(XXY) (o) EB { X><Y( 14 ) XSO a yw

> sup inf {/ c— —¢d7r+/ d +/¢du}2
(p,)eB TEP(XXY) X><Y( i ) X we Y

> sup inf {/ c—p—1Y d7r+/ d +/wdy}
(pp)el, TEP(XXY) X><Y< v ) XSO : 1%

and, by the fact that ¢ > ¢ + v in I., we obtain

v

min C(m) > sup {/ gpdu+/¢du}.
wel(p,v) (pab)€ElL X v

In order to prove the converse inequality, let us consider firstly the case ¢ € Lip, (X X
Y'). By Proposition (2.3), supt(mg) is c-cyclically monotone and, like in Theorem (P.32),
fixed (xo, o) € supt(r), the function ¢ defined by

= inf n) — ns Yn nyYn—1) — n—1, Yn— to
o(x) nEan\{O} (c(@,yn) — (Tns Yn) + (Tns Yn—1) — (Tn—1,Yn-1) + -+
(x1,91),---,(xn,yn) Esupt(mg)

+c(1,90) — c(0, Y0))

is a c-concave Lipschitz and bounded from above function such that ¢ 4+ ¢ = ¢ and
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©(xo) = 0. By the fact that
P (y) < c(wo,y) — p(w0) < supe,

also ¢ is bounded from above. Now,

p(r) = (¢°)(z) = ;g§ c(r,y) — ¢°(y) > inf ¢ — sup ¢*

so ¢ is also bounded from below. Similarly, ¢¢ is bounded from below. Consequently, ¢

and ¢°¢ are bounded Lipschitz functions. Finally,

min C(m) = / cdmy = / cdmy = / (4 ¢%)dmy =
mel(pv) XxXY supt(mo) supt(mo)

:/ gpdwo—l—/ pdmy < sup {/ gpdu+/¢du}.
supt (o) supt (7o) (p)ele X Y

In particular, equality holds and (yp, ¢¢) are Kantorovich potentials.

In the general case, consider (Z,c), the inf-convolution of ¢. By the fact that

Z,c € Lip,(X x Y) for every n € N, using the previous case,

min / Z,cdm = sup {/ 90dM+/ de}-
mel(pv) Jxxy (e)Elzyc X Y

In particular, using the fact that Z,c < ¢,

(2.5) min / Zyedm < sup {/ godu—l—/wdy}.
me€l(wv) Jxxy (p)ele \Jx Y

Now, let (m,) in I'(i, v) a sequence of optimal plans for (Z,c). By Proposition (1.13),

up to a subsequence, m, — 7 for some 7 € I'(u, ). If m € N and n > m,

min / I,cdm = / I,cdm, > / Z,cdm,,
mel(uv) Jxxy XxY XxY

so passing to the liminf as n — 400, by Lemma (P.19),

liminf min / I,cdm > lim inf / Iycdm, = / ILcdm
no omel(wy) Jxxy " XxY XXY

and if m — +oo we obtain, using the monotone convergence Theorem,

liminf min / Z,cdm > lim Lpcdm = / cdt > min C(r).
XXY XxY XxY

no wel(pv) m mel(pv)
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By the fact that the right-hand side in (2.5) does not depend on n,

min C(m) < sup {/ @dﬂ+/¢dy}
wel (p,v) ()€l X Y

and the result follows. m

(2.6) Remark Using Proposition (P.28), arguing in the same way as in the proof of

Kantorovich-Rubinstein duality, it is clear that

sup {/ god,u—i—/wdu}: sup /fd —v)
(pp)ely X Y f€Lip(X),Lip(f

2 Dual Schrodinger problem
The Schrodinger problem, like the optimal transport problem, is a convex constraint
optimization problem, so we can derive a dual representation.

(2.7) Definition Consider a Polish space (X, d), R € Ri(X x X) and po, 1 € P(X).
Suppose there exists a Borel function B : X — [0, 400] such that

/ B@)=BW R (x,y) < +oo, / x)dpo(x) < 400, / x)dp(x) < 400.
X><X

In the so-called dual Schrodinger problem we look for

sup {/ odpug +/ Wpdp, — log (/ e‘PewdR) o X — R Borel,/ e?PYdR < —|—oo} .
X X XxX XxX

Let us now show that the two formulations are in fact equivalent, as expected: we
prove this fact in the case H(uy ® p1 | R) < 400 to have existence, uniqueness, and
the structural formula for the minimizer. The argument is completely based on Lemma

(1.24). A more general proof can be found in [40].

(2.8) Theorem Consider a Polish space (X,d), m € R (X) and R € R (X x X) such
that (p1)gR = (p2)ygR=mand m@m < R<m®@m. Let o = gom, ;13 = oym € P(X).
If there exists a Borel function B : X — [0, 4o00[ such that

/ e~ B@)— B(y)dR(x y) < 400, / x)dpo(z) < 400, / x)dp(x) < 400
XxX
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and H(po @ p1 | R) < 400, then

min  Hgr(m) = max {/ wd +/ Wdu, — log (/ e‘p@wdR) :
m€T (o p1) X X XxX

o,: X =R Borel,/ e#PVdR < +oo} .
X

Proof. First of all, by Theorem (1.28), let v = (f ® ¢g)R be the minimizer for Hg on
(o, 1), for some f,g : X — [0,400[ Borel functions. In particular, ¢ = log f and
1 = log g are Borel and

/ e“’@‘”dR:/ f@gdR=~(X x X) =1 < +00.
XxX XxX

Now, by Lemma (1.24),

min  Hg(m) = Hg(y) = sup / udy — log / e"dR | :
m€D (o 1) X XxX

u:XxX—>]RBorel,/
b's

> sup {/ odjig + / wdp, — log (/ e¢@¢dR> :
X X XxX

o, X - R Borel,/ e?PVdR < —I—oo} >
X

> / log fduo + / log gdj; — log ( / elogf@logng> =
X X XxX

- / log(f ® g)dy —log1 = / log(f ® g)dy =
XxX

XxX

e“dR < —1—00} >

= Hg(y) = min Hg(nm),

m€l(po,11)

so the supremum is a maximum and the result follows. =



Chapter 3

The Wasserstein space (Pa(X), Ws)

1 Definition and initial properties

This chapter is mainly dedicated to the study of the metric space (Pa(X), Ws):
the name of this space is a problematic issue in the History of Mathematics because
Leonid Nisonovich Vaserstein, the mathematician from whom it takes its name, does
not provide an explicit definition of it. Moreover, he was only interested in the case
(P1(X),W1), which we do not care about. In the end, Wasserstein distances were
introduced, independently, several times throughout the last century: another possible
name is, indeed, Kantorovich-Rubinstein distance.

From this point on, we will always consider the square distance as cost in the optimal

transport problem. Let us start with the basic definition of the chapter.

(3.1) Definition Consider a Polish space (X, d) and the set

Po(X) = {u eP(X): / d*(z, vo)du(z) < +oo for some (and thus for all) zy € X} )
b

we call Wasserstein distance on Po(X) the function Wy : Po(X) X Pa(X) — R such that

Wi(p,v) = min C(x).

m€l(w,v)

Since form and substance are different, we have to prove that W5 is well defined and,
actually, a distance on Py(X). We will use the following Lemma whose proof is based
on Corollary (P.17).

(3.2) Lemma (Dudley) Consider Polish spaces (X1,dy), (Xa,d2), (X3,ds) and take
w1 € P(X1), po € P(Xa), 3 € P(X3). If '% € Ty, pi2) and 7 € T(pa, u3), then there

79
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exists m € P(X x Xy X X3) such that

(p1’2)#7r — 71_12’ (p s

Proof. By the fact that 7'% € T'(uy, pi2), we have that 7% € P(X; x X3) and (p?)gn'? =
2. By Corollary (P.17), for every A € #(X; x X»)

w2) = [ w2 (Adpa(ra)
Xa
Analogously, for every B € A(X, x X3)
w(B) = [ 73(B)dualrs)
X3
The measure 7 : B(X; x Xy x X3) — [0, 1] such that
T(E) = [ (727 E)da(a)
X2
has the required properties. m

(3.3) Theorem If (X,d) is a Polish space, then (Po(X), Ws) is a metric space.
In particular, the function E : X — Im(E) C Py(X) such that

1S an isometry.

Proof. First of all, since p ® v € T'(u, v), given zq € X, by the fact that p, v € Po(X),

W3 (p,v) < 2/

; d*(x, z0)dp(x) + 2/ d*(y, zo)dv(y) < +oo.

X

Now, by the symmetry of the Kantorovich problem and d, W5 is also symmetric and

clearly W5 > 0. In particular,

W3 (i, 1) S/ d*(z,y)d(1d, Id) g p(z, y) = 0,

XxX
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so Wa(p, 1) = 0. Conversely, if Wy(u,v) =0, given 7 an optimal plan, one has

0= Wgz(,u, v) = / dz(a:, y)dm(z,y),
XxX

so d*(z,y) = 0 m-a.e. in X x X, that is # = y 7-a.e. in X x X. What we obtain is that

for all bounded and Borel functions f

[ t@aut) = [ p@inn = [ fwiren = [ foawm).
SO [t = V.

Let us now prove the triangle inequality. Let us consider u,v,0 € Po(X) and
X; = Xy = X3 = X. Initially, p € P(Xy),v € P(X3),0 € P(X3), so for every
m'?2 € T'(u,v) optimal and 7** € T'(v,0) optimal, by Dudley’s Lemma, there exists
m € P(X; x X3 X X3) such that

(pl’Z)#ﬂ' — 7T12, (p ,

In particular,
(p")wm =, (P")ym =0,

so (ph?*)um € I'(u, 0) and

Wa(p, o) < J/X Xdz(-flaxfi)d(l’l’?’)#ﬂ(xh953)-

Viewing d?(x1,z3) as a function of xy, 25 and z3 not depending on x5, using the change

of variables formula one has

WQ(M7U) S $/ d2<ﬂf1,l’3>dﬂ'($1,$2,x3),
XxXxX

so by monotonicity of the function {t > ¢ > 0}, the integral and the square root,

using the triangle inequality of d, one has

Wa(p, o) < \I/XXXXX(d(xl,xg) + d(xg, x3))%dm (21, T2, T2).

Finally, viewing d(z1,x2) as a function of x1, x5 and z3 not depending on 3, d(xs, z3)
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as a function of x1, 9 and x3 not depending on x; and using the triangle inequality of

Lebesgue norms, we arrive at

W2(/%U) < \l/ d2($1,$2)d7r($17172,$3> + \l/ dQ(I2,$3)dW($1,$2,I3>
XxXxX X xXxX

and using again the change of variables formula

Wa(p, o) < / d?(xq, xo)dm'2(xy, o) + / d*(xg, x3)dm?3(zg, x3).
XxX XxX

The desired conclusion follows by the optimality of 7'? and 723.
Let us now prove that the function F : X — Im(F) C Py(X) such that

is an isometry. Clearly it is well defined and bijective. Consider now z,y € X. Let us
prove that I'(d,,d,) = {J, x 0, }. By contradiction, if not, then there exists 7 € I'(d, d,)
such that m # 0, ® §, = 0(zy). In particular, there exists (2',y') # (z,y) such that
(«',y') € supt(m). Let us consider r > 0 such that = ¢ B(2/,r) and ¢ € C,(X) such that
v >0, p(2') > 0 and supt(¢) € B(a’,r). One has,

0=¢(z) = / @dd, = / d(px)pm = / @d(px)gm >0
X X B(a/,r)

that is a contradiction. In conclusion, W5(6,,d,) = d(z,y), so E is an isometry. m

2 Geometrical analysis of (Py(X), W)

We would now like to study some geometric properties of Wasserstein spaces. To do

this, we first need a generalization of Dudley’s Lemma.

(3.4) Lemma (iterated Dudley) Given N € NU {400} such that N > 3, (X,,d,)
Polish spaces and p, € P(X,,) for 1 <n < N. If 9, € T(pn_1, tin) for 2 <n < N, there
exist m, € P(X1 X -+- x X,,), for 1 <n < N such that the following facts hold true:

(a) p;g"""_lﬂn =71 for2<n <N,
(b) plymy = pi for1<i<n<N,

(¢) plyVim, =0, for2<i<n<N.
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Proof. The case N = 3 follows by Dudley’s Lemma. In general, for N finite, we only
have to repeatedly apply Dudley’s Lemma to

X1X"'XXn:Z1><ZQ><Zg

where Zl = X1 X oo X Xn_g, ZQ = Xn—l; Z3 = Xn7 Tn—1 € P(Zl X ZQ) and ¥ €
F(,U/nflnun) - P(Z2 X Z3)

The case N = +oo follows from Kolmogorov’s Theorem. m

Let us start with uniform properties of (P2(X), Wa): we are, in particular, interested
in completeness. The proof will be based on the fact that, given a measure space
(E, % , i), with p finite, the metric space LP(E, % , pu; X) is complete whenever (X, d) is
complete. Since we want to talk about completeness, to be consistent, let us remember

that the set (in general is not a vector space)

LV(B, %1 X) = {feM(E,u;X>: [ () z0pinta) < +oc,

for some (and thus all) zy € X }

( [ g)du);

(3.5) Theorem Consider a Polish space (X, d). (P2(X), Ws) is complete.

is endowed with the distance

Proof. Let (u,) be a Cauchy sequence in (P2(X), Wa). By the Cauchy property of (1),

up to a subsequence, we can assume

Z Wo(ftn, piny1) < +00.
n=0

Now, let us consider 7o, € P(II52, X») in accordance with iterated Dudley’s Lemma,
applied to (u,) and (X,,) = (X).
Observing that

/00 d2(pnapn+1)d7roo - /00 d2(l‘m xn+1)d<pn7pn+l)#7roo = W22(/~Lm Mn+1)7
n=0 n=0
we deduce that the sequence of projections (p™) is Cauchy in L*(T12%q X, [12%0 B, Too; X).

Thanks to the completeness of L2([1°% Xy, [152 B, Too; X ), (p") converges to some p
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in L2([15% 0 X, [1°%g B, Too, X ). Defining

Hoo = (p)#ﬂoov

we have

W) < [ E " pms =0,

n=0""

SO [bn, — oo and the proof is concluded. m

We now want to move on and analyze more topological properties of (Py(X), Wa),
in particular, compactness and separability. Since W5 convergence is not particularly

easy to handle, let us look at an equivalent condition.

(3.6) Theorem Consider a Polish space (X,d). Let (i) in Po(X) and p € Po(X).

The following facts are equivalent:
(@) pin — g in (Pa(X), Wa),

(b) py, — g and for some (and thus all) xo € X one has

lign/Xdz(a:o,x)dun(x):/Xdz(xo,x)d,u(x).

Proof.

(a) = (b) Fix o € X. Let us start proving that if v € Py(X), then ['(d,,,v) =
{6z, ® v}. By contradiction, if there exists m € I'(d,,,v) such that 7 # §,, ® v, then
there also exists 2/ € X such that for all y € X one has (2/,y) € supt(m). Let us
consider r > 0 such that =y ¢ B(2/,r) and ¢ € Cp(X) such that ¢ > 0, p(z’') > 0 and
supt(¢) € B(2’, 7). One has,

0= ¢(xg) = / oddy, = / god(pl)#ﬂ = / gpd(pl)#w >0
X X B(z/,r)

that is a contradiction.

Using the above result, we can write

|\//d2:vxodun \//d2x$0du)

and, using the triangle inequality, one has

‘\//de:codun \//dexgdu)

= |W2(5I0nun) WQ(Csxov )l

< WQ(:“’TH )
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We can therefore conclude that
lim/ d* (g, 2)dpn () :/ d?(zo, v)dp(z).
" oJx X

Let us now consider f € Lip,(X) and ,, € T'(ty, ) optimal. One has,

lim sup f(y)du(y) | =

/X F (@) dpn () —

X

= lim sup <
n

< Lip(Plimsup [ d(e.g)m, o.1).

n

Using Holder’s inequality and remembering that m, € P(X x X) we obtain

fimsup | [ fe)da(a) = [ F@)ut) < Lip(Plimsup Walpn. ) =0

The result follows by Lemma (P.19).

(b) = (a) Let us consider firstly the case when (X, d) is compact, so totally bounded,
so bounded. Fixed z € X and consider the closed subset of C'(X)

Z ={f € Lip(X) : Lip(f) <1, f(2) = 0}
Let us observe that if f € Z
f(2)] = |f(z) = f(2)] < Lip(f)d(z,z) < diam(X),
so max|f| < diam(X) and f € Lip,(X). If (f) in Z, for every h € N
[ fnlloo = max fp < diam(X),

so (fn) is bounded in (C(X), || ||). Fixed € > 0, given any § > 0 such that § < ¢, for
every h € N, if x,y € X such that d(x,y) < J, then

[fn(@) = fu(y)] < d(z,y) <6 <e,

so (fr) is also equi-uniformly continuous. By Ascoli-Arzela’s Theorem, there exists (f3,)
converging in (C(X), || |l))- Being Z closed, (fn,) also converges in Z. Therefore Z is

compact.
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Let us define, for every f € Z,
L) = [ fdm, L) = [ fan
X X

Fixed € > 0, by the fact that u, — p, using Lemma (P.19), there exists 2 € N such that

/X Fdpun /X fdp

so, being uniformly bounded, L,, — L uniformly in Z. By translation invariance, we

o (/X fd(pn — u)) = sup (/X fd(pn — u)) — 0.

Now, using Remark (2.6) and Kantorovich-Rubinstein duality, we deduce the existence

for every h > h

<e,

have

of m, € I'(tn, 1) optimal for d such that

lim ddm,, = 0.
"o Jxxx
Being X compact, d is bounded, so there exists C' € R such that d < C. Furthermore,

observing that

/ d*dr, = / d*dr, + / d*dr, <
XxX (XxX)N{d<1} (XxX)N{1<d<C}

< / ddm, + C/ ddm, < (1+ C)/ ddrm,,
(X xX)n{d<1} (X x X)N{1<d<C} XxX

we have

W3 (fn, 1) < /

XxX

d*drm, < (1+ C’)/ ddr,,

XxX

and passing to the limit as n — 400 we have p,, — p in (P2(X), W).

In the general case, fixed =g € X, consider (0,) in P(X) and ¢ € P(X) such that
for every B € #(X)

ou(B) = - / 1+ E(zo.2)dpn(z),  o(B) = - /B (1+ (20, 2))dp(x)

L 7
Z, = /X U+ P oo, )dun(z), 7= /X (1 + (20, 2))du(z).

Clearly, by (b),
liTan Ln=2
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and, by Lemma (P.20), for every A C X open

lim inf /dQ(xO,a:)dun(m):liminf / d*(zo, )X a(x)dpt, (x) >
" A " X

> [ o apala)duta) = [ & (o )dulz).
b's A
Combining these two facts with Lemma (P.21), we obtain that for every A C X open

1
liminf 0,,(A) = lim inf 7 / (14 d*(zo, 2))dpn(x) =
" A

n
n

1
- /(1 + (w0, 2))dpin () >
Z n A

1
> 7 llim inf g, (A) + lim inf / d*(zo, ©)dp,(z)| > o(A),
n n A

then, applying again Lemma (P.21), o, — o.

Now, by Prokhorov’s Theorem applied to the set {o, : n € N}, there exists an

increasing sequence (K}) of compact subsets of X such that 2y € Ky and
liin sup o,(X \ K) = 0.

Now
Zoon(X \ Ky) > / 02 (20, 2)dpin (),

X\Kp
SO

n

lim sup / d*(xg, x)dp,(z) = 0.
k X\Kx
If we define g, = pn | K + (1 — pin(Ky))dz, € P(Ky), fixing k € N, we have
finge = Vi = [ K + (1 — (K )) 0,

Using a diagonal argument, being in a compact, we can find (i, ) such that for every
k €N, (pin, ) converges in (Po(Ky), W2). Up to interpreting (pi,,; ) as a sequence in
P2(X) of measures with support in K}, we obtain, for fixed & € N, that (j,, ) converges
in (Po(X), Wy).

Considering now m,; € P(X x X) such that

Tk = (Ida Id)#,un LKk + (Id: f)#um
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where f: X — X such that f(z) = z¢, we have, for every B € #(X),

()47 k(B) = mr((p)"H(B)) = k(B x X) =
= (Id, Id) e pan [ K (B % X) + (Id, f)pin [ (X \ K)(B x X) =
= fin | K (14, 1d) "1 (B x X)) 4 g [(X \ K)((1d, f) (B x X)) =
= pn | Ki(B) + p (X \ Ki)(B) = pin(B)

and

(P*) 47k (B) = mui((0?) 71 (B)) = mup(X x B) =
= (Id, Id) g pn [ K (X X B) + (Id, f)aepin [(X\ K ) (X x B) =
= i [ Kk (1, 1d) 1 (X x B)) + o [(X\ Ki)((Id, £) 7 (B x X)) =
= pn [ K (B) + pin | (X \ Kip)(X)0z0 (B) =
= pin | Kk (B) 4+ (1 — pn (X \ Ki)dso (B).

Resuming,

(pl)#ﬂ-n,k = Hn, (p2)#7rn,k = HUn,k,

SO Tp i € I'(pn, i, ) and

d2 (ZL’, y)dﬂ-n,k(‘ra y) -
XX

2, ) (10, 1) o | K (2, ) + /X P, y)d(d, ) gz, y) =

xX x X

(d* o (Id, Id)) (x)dps | K () + / (d* o (Id, f)) () dpin | Kk () =

X

W22(:un7 :un,k) S

Il

d*(, 2) X s dpin () + / d* (2, 20) X x\ e, pin () =
X

dQ(xa xO)dﬂ’n (.T) :
\Kx

Now, let us prove that the sequence () is Cauchy in (P2(X), Ws). Fixed € > 0,
by the fact that (p,, ) converges in (Py(X), Ws) for any & € N, then it is Cauchy. In
particular, for every k € N there exists (k) € N such that for every n;,n; > n(k)

2 g?
W2 (H’nj,k>y“nl,k) < §7
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then, by the triangle inequality,

Wg(unja :um) < 4VV22 (/JJVLJ ) /’l’nj,k) + 4VV22 (/’l’nj,k7 /Jlm,k) + 4W22(an,k7 :unz) <
S SSup W22 (/’Lﬂn Mn,k) + 4W22(/’Lnj,k7 /’Lnl,k) <

2
< 8sup / d*(z, zo)dp, () + <.
X\, 2

n

If we choose k € N such that

2
sup [ P lo)dale) < 35
nJX\K;

then for every n;,n; > n(k)

W3 (o fimy) < €

as required. By the completeness of (P2(X), W,), it follows that (j,;) converges in
(P2(X), W3). We can show that p,, — p in (Po(X), Ws). Indeed, let v € Py(X) such
that u,, — v in (P2(X), Ws). Using the first implication, p,, — v, but since p, — p,
then p,; — p and the uniqueness of the weak limit provides u = v.

We have therefore exhibited a subsequence of (u,,) that converges to p in (Po(X), Wa).
Repeating the argument for every subsequence of (y,) in place of (u,), we obtain u,, —
in (Pe(X),W3). m

As for the compactness, the proof is essentially based on the combination of the
weak compactness of P(X) with the characterization of W5 convergence that we have

proved.

(3.7) Corollary Consider a Polish space (X, d). If (X,d) is compact, then (P(X), W)

is compact as well.

Proof. First of all, by Theorem (P.22), P(X) is weakly compact. Now, compactness of
(X, d) implies that (X, d) is totally bounded, hence bounded. In particular, Py(X) =
P(X) because if p € P(X) for every zp € X

/Xdz(:lr,aso)du(a:) < diam?*(X) < 4o0.

Combining this with Theorem (3.6) the result follows. =

With regards to separability, we, more or less directly, trace back to the useful

characterization of W5 convergence that we have given before.
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(3.8) Corollary Consider a Polish space (X,d). (Po(X), Ws) is separable.

Proof. First of all, by separability of (X, d), there exists D C X at most countable such
that D = X. Consider, now, the sets

D= {a €EPyX):0=> ¢,z € D,q; € Q" \n EN}
i=0

and

3= {O’ S PQ(X) 0= thémz,xl c X,tl' c R+}

i=0
We have 3 C D. Let us prove that if u € Py(X) has bounded support, then u € D.
By the fact that g has bounded support, there exist o € X and r > 0 such that
supt(u) € B(xg,r). Now, for any h € N\ {0} let us consider (Az(h)) a Borel partition of
B(xg,r) such that diam (Agh)) < +. Defining

Nh—ZN(Ah)(S(h)a

where 2" € AM if f € Lip,(X), one has

A
s0
/fdu—/xfduh o (Agh) ( fdb | <
2w M—M(Afh)/A()fdé "
< L1003 4 (A%) = FLip()uBlan. 1)

Thanks to Lemma (P.19), we obtain p, — p. Now, analogously

[ e wdnto) - [ P 2

Z

A(h>
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therefore

1
[ el a)duta) [ Pl () < uBla),
b b
so, by Theorem (3.6), we obtain p, — p in (P2(X), Ws). Observing that (u) in 3, it
follows that u € D.

In the general case of u € Py(X), given = € supt(u) and R > 0, if we consider the

measure 1

1(B(z, R))
one has that the support of g is bounded and, if R — 400, g — p in (Po(X), Wa),

Hr = MLB(:E’R)7

thanks to Theorem (3.6). Combining the case with bounded support and the previous

approximation, the result follows. m

(3.9) Remark Combining Theorem (3.5) and Corollary (3.8), we understand that
whenever (X, d) is Polish, then (Pa(X), W3) is Polish as well.

For further details about Wasserstein spaces, the interested reader may refer to [64]
and [3].

We conclude the section with some results due to Brenier and Knott—Smith. We
omit the proof, but the interested reader can find further details in [1], [37] or [8]. We
just underline that absolute continuity with respect to £" assumption is required to

avoid atomic behavior that would ill pose Monge’s problem.

(3.10) Theorem Consider p,v € Py(R"™), with p < L™. The following facts hold true:

(a) there exists a unique minimizer m for the problem
. 1 2
min *|3L’—y| dﬂ'({L‘,y)Iﬂ'EF(/L,V) )
R2n 2
(b) there exists a unique, up to po-negligible sets, minimizer T for the problem
: 1 2 n n
min §|x —T(z)|*dp(z) : T : R" — R" Borel, Typ=v ¢,

(¢) m is induced by T,

(d) there exists a function ¢ : R" — |—00, +00] convez, lower semicontinuous and ji-a.e.
differentiable in R™ such that
T = Dv.
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Proof. See [1, Theorem 5.2]. =

(3.11) Theorem Consider p € Po(R"™), with p < L™. If there exists a function

Y R™ = ]—00, +00| convez, lower semicontinuous and p-a.e. differentiable in R™, then
T = D,

is the unique, up to po-negligible sets, minimizer for the problem

1
min {/ §|x —T(z)du(x) : T : R — R" Borel, Typ = 1/} .

Proof. See [1, Theorem 5.2]. m

(3.12) Theorem Consider u,v € Po(R™), with p,v < L™. If TFY is the unique, up

to p-negligible sets, minimizer for the problem
. 1 2 n n
min §|x —T(z)|*du(x) : T : R* — R" Borel, Ty =v
and TV is the unique, up to v-negligible sets, minimizer for the problem
. 1 2
min §|x —T(z)|*dv(z) : T : R" — R" Borel, Tyv = p ¢,

then
T 7 HFoTH " =1d

p-a.e. in R™ and
T,u,—)l/ o Tl/—>/.t — Id

v-a.e. in R™.

Proof. See [1, Theorem 5.2]. m



Chapter 4
Dynamical representations

From now on, we will consider, as an environment, R" equipped with the Euclidean

distance and we will deal only with the case p, v € P2(R™), to have Wy (u, v) well defined.

1 Dynamic optimal transport

So far, to talk about the Kantorovich problem, we have always paid attention to the
initial and final configurations of mass, or at most on the intermediary that carries out
the transport. With the dynamic representation we want to propose in this section, we
are instead going to focus our attention on the path that the mass will have to follow
to move from the initial configuration to the final one. In this way, by increasing the
level of abstraction to formulate the problem, we will instead recover its most intrinsic

meaning. Let us analyze a short example.

(4.1) Example Consider x,y € R" and d,,06, € Pa(R"). As we have already seen,
the only optimal plan is 6, ® d,. As for the path that the mass must travel, we have to

consider the geodesic connecting x and y, namely

() =ty + (1 —t)x.

T

Figure 4.1: The path of a Dirac mass between = and y.

Let us proceed, then, by formalizing what we saw in the previous Example.

93
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(4.2) Definition Let p,v € Po(R™). In the so-called dynamic optimal transport

problem we look for

inf {/ Aa(7)dn(y) : n € P(C([0,1];R™)), (eo)yn = 1, (€1)4n = V} :
(o, 1]m)

In particular, we will refer to any admissible n as a dynamic transport plan and any
optimal n as a optimal geodesic plan. We will denote with OptGeo(u,v) the set of

optimal geodesic plans from p to v.

We want now to prove that the dynamic formulation of the optimal transport problem
is equivalent to Kantorovich’s one: fundamental will be the fact that fixed x,y € R,

there exists a unique v € Geo(R™) connecting them.

(4.3) Theorem Let pu,v € Po(R™). It results

min C(7) = min{ o Ax(7v)dn(y) : n € P(C([0,1;R™)), (eo)un = i, (e1)4n = V} :

mel(p,v) [0,1;R™)

Proof. First of all, if v € AC([0, 1];R™), by Hoélder’s inequality,

1 1 i
[ e < ( / M%wl)
0 0

and, by the definition of an absolutely continuous curve and Theorem (P.35),

(1) = ~(0)] < / Iy,

SO 1
(1) — A (O) < / 2L,
0

Now, if  is a dynamic transport plan

1
/ As(7)dn(v) > / As(v)dn(y) > / / 1Y [PdLdn(v) >
C((0,1):R") AC([0.1]:E™) Ac((o.1):m) Jo

> / T =3O Pan) = / k) et =

0,1;R™) 0,1;R™)

_ /|x — yPd(eo, e1)un(z, y).

Observing that pj o (e, e1)x = (p' o (e, €1))4 = (eo)y (vesp. ph o (o, 1)y = (1)),
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we can affirm that (eg, e1)xn € I'(p, v), so

/ As(7)dn(y) > min C(n).
C([0,1;R™)

mel(p,v)

In particular,

min c<w>3mm{ [ Aa)a) 1€ PO AR, ()m = (61)#n=V}-

mel(uy) [0,1);R")

Consider now 7 € I'(i, v) optimal. For any (z,y) € R* xR" choose v, : [0,1] — R"
such that 7, ,(t) = ty + (1 — t)z. Define the function ® : R” x R™ — Geo(R") such that

(I)(x7 y) = Ya,y

and the measure ' = @7 € P(C([0, 1];R™)) which is, by construction, supported in
Geo(R™). Using Lemma (P.51), we can write

pin, O = [le—yiare) = [ B0 =P = [ A

mel(p,v)

SO
min C(m) > min{ Az(7)dn(y) - n € P(C([0,1;R™)), (eo)4n = p, (e1)4n = V} :
mel () O((0. 1))

and the proof is concluded. m

(4.4) Corollary Let u,v € Po(R™). The following facts are equivalent:
(a) n € OptGeo(u,v),

(b) supt(n) C Geo(R™) and (eg, e1)xn € I'(, v) is optimal.

Proof. 1t is a direct consequence of Theorem (4.3). =

Thanks to this new characterization of the optimal transport problem, we can prove

another geometric property of (Py(R™), W5).
(4.5) Theorem (P>(R™),Ws) is geodesic.

Proof. Fix p,v € Po(R™). By Theorem (4.3), there exists n € OptGeo(u, v) such that

W2(u,v) = / Ao(7)dn().

Geo(R"™)
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Consider p; = (e;)xn. Clearly po = p, 1 = v, and using Lemma (P.51) and the

characterization of Geo(R"), for every s,t € [0, 1] we have

s — tPW2(, ) = |s — 12 /

Geo(R"™)

(1) = 7(0)[2dn() = / () — A1) 2dn() =

Geo(R"™)

— [ e = o) = [ le = yPd(enenene.n)
C([0,1;R™)
Since (es, e;)xn € I'(us, p1r), we obtain the inequality
|5 — W3 (v) = Wi (ps, )
By the characterization of Geo(Pa(R™)), ur € Geo(Pa(R™)), and the result follows. m

It is interesting to point out that every constant speed geodesic can be lifted to an

optimal geodesic plan between its extrema.

(4.6) Theorem FEwvery p; € Geo(P2(R™)) has a lifting n € OptGeo(ug, 11)-

Proof. Consider p; € Geo(P2(R™)). Let N € N be such that N > 3 and take, for every
i1=1,...,N, v; € F(u%,u%) optimal. By Iterated Dudley’s Lemma, there exists
7y € P((R™)N*1) such that for every i = 1,..., N

sy = 8,
For every i = 1,..., N, consider ®; : R” x R" — Geo(R") ¥J;-measurable such that
(2, y) = Y,y

where 7,, : [0,1] — R" is such that v,,(t) = ty + (1 — t)z. Define the function
OV (RM)NH — O([0,1]; R™) such that for every i =1,..., N

| = i1 + (z; — xiq) (N (t— Z&l)> )

q)N(x07 s ,.TN)|[%7

2‘s.

..o TN

. T
To

Figure 4.2: A piecewise geodesic connecting N + 1 points.
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Consider now ny = (®V),mn € P(C([0,1];R™)),

/ Agdm\/—/ AQ ( )#ﬂ'N /.AQOCI) d?TN—
C([0,1];R™) [0,1;R")
// (N |2 dL dry / <I>N) |dLYdry =

Using the change of variables s = N (t - %), we obtain

ZL‘Z'_1| dL ) d?TN(ZL‘Q,. .. ,[L’N).

N
/ AQd’f]N = NZ |ZL‘Z —Ii_1|2d7TN(l'0,...,JZN) =
([0,1];R™) i=1
N i—1,1
= NZ |z; — 9€i—1|2dp;f (N ) (Tim1, ) =

—NZ |z; — 21 P dVi(zi 1, @ NX:VV2 fisty fbi i ).
=1

=1

By the fact that u; is a geodesic,

1
WQQ(IM07 lul)v

Wf(ﬂ%,%) - N2

SO we can write
(4.7) / Asdy = W(jio, 1),
([0,1];R™)

then

sup / Az (y)dnn (7) < +o0.
N Jo(o e

Observing that for every ¢ € [0, 1] and all ¢ € Lip,(R") we have,

/C — p(y()dnn (v) — /C o (7 (W]\;J» dn ()
< /C([Oyl];w) e(v(t) — ¢ (7 (W]\:J» ‘an(v) <
< Lip(p) /C([OJ]M Y(t) = (L]fvtj>‘dn (7) <

t
<tipe) [ [ WldCldne(s)
C(lo1)rm) JLZH

<
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so, applying Hélder’s Inequality and thanks to (4.7),

Lo 00~ [ 2 0 (5] )
= Lip(¢p \/W/[OHR” /;H!v\zdﬁldw()
< Lip(so)\/t—W /C o dev(v) =

[Nt

vy : vty
<L1p(90)\/ N $/([071];Rn)«4( )dnn () = Lip(p)y/t N Wa(po, p1)-

We can therefore write

llm/god er) 4NN = hm/gpd N = 11m/<PleNtJ —/ odpiy.

In other words, (e;)xnny — ¢ and, thanks to Prokhorov’s Theorem, ((e;)xny) is tight

in P(R™). Then, random Ascoli-Arzela’s Theorem gives us the existence of (1y,) such
that ny, — n in P(C([0,1];R")) for some n € P(C([0, 1];R™)). Writing (4.7) for (nx,)
and passing to the limit as j — 400, remembering that A, is lower semicontinuous, we
obtain, by Lemma (P.20),

/ Ax(7)dn(y) < W3 (o, p11)-
([0,1];R™)

/sod(et)#nzlglvrl/ sod(et)#mvz/ i,
X X X

we also obtain (e;)xn = p for every t € [0,1]. =

By the fact that

Since in R™ we have the uniqueness of geodesics, it is interesting to understand if

the same result holds in Py(R™). What we can say, in general, is the following result.

(4.8) Proposition Let 19, 1 € Po(R™). If there exists a unique m € I'(uo, 11) optimal,
then there exists a unique n € OptGeo(pg, 1) and a unique p, € Geo(P2(R™)) connecting
fo and py. In particular, p, = (e;)un.
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Proof. As seen in Theorem (4.3), n = ®xm € OptGeo(pg, p1). If 77 is another optimal
geodesic plan between g and u1, we have supt(77) C Geo(R™) and (eq, e1)x7 = 7. By
the disintegration Theorem, 7 = 7, so the uniqueness of the optimal geodesic plan

follows. The result therefore follows from Theorem (4.6). =

More specifically, if py < L™, we can combine Theorem (3.10) and the previous

Proposition to get the uniqueness of geodesics.

(4.9) Corollary Consider pg, 1 € P2(R™). If uo < L, then there exists a unique
wy € Geo(Pa(R™)) joining g, 1 and a unique n € OptGeo(ug, f41).
In particular,

Ut = (E)#MO?

where T is the optimal transport map from ug to uy and

T, = (1 —t)Id +(T.

Proof. Since, by Theorem (3.10), 7 = (Id, T") 4410 is the unique optimal plan from pug to

1, the result follows from Proposition (4.8). =

We conclude the section with a semi-explicit (we omit computations) example of
geodesics between two non-atomic measures: further technical details can be found in
[23], [29], [37], [45], [53] and [43], but we want to focus only on the results.

(4.10) Example Fiz Ky and K; two symmetric and positive definite matrices and

mg, my € R™. Consider

o = L amoKy o) o
(2m)" det (Ko

[ = 1 6—%(m—m1)-K1_1(:v—m1)£n‘
(2m)" det (K,

It can be shown

1 1,
min C(7) = W22(M07M1) = |mg — m1]2 + Tr(Ko) + Tr(K;) — 2Tr( K2 KoK ?)2,

WGF(HOJM)
where Tr is the trace (of a matriz) operator, and the geodesic between g and iy is

1
Mt = e
(2m)™ det(K)

f%(xfmt)-Kfl(xfmt)En

Y
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where my = tmy+(1—1t)mg and Ky = 2 K, + (1 —1)* Ko +t(1—1t) ((KOKl)% + (KlKO)%) .

2 Dynamic Schrodinger problem

Even if the formulations given so far for the Schrodinger problem are the simplest,
since what we are studying is an interpolation problem, the most natural thing is to
study it from the dynamic point of view. In other words, we would like to recover its
most intuitive meaning and formalize it: We will see in this section how to translate the
statement "finding the most likely evolution for systems of diffusive particles between
two different observations" into abstract mathematical language and how to manage this
formulation. Even though we will treat the theory with a fairly high level of generality,

let us keep in mind that the basic idea is given by the following example.

(4.11) Example Consider a system of i.i.d. Brownian particles. Suppose we know,
with a certain accuracy, the positions at two different times. We look for the Brownian
bridge that connects the observations: in other words, we look for the trajectories of the

Brownian particles.

/ - T ~~
~ ~
s = T = N\
~
/ y . ~\
‘“\f s
\J " r’””\"
ﬁ ‘% ‘W” o ‘2“ %‘ "'. 'm'\"iv" ‘,’;:/II\*\?‘”:
w i sl v
W ‘.““ N/ \W&T V M7
AN
N B /
=~ — —
~ P 7

Figure 4.3: An example of Brownian bridge (picture from [38]).



2. DYNAMIC SCHRODINGER PROBLEM 101

Coming back to us, before going on, we show the following technical result that is
necessary for us to have the consistency of the definition of the dynamic Schrodinger

problem we want to propose.

(4.12) Proposition Consider R € R (C([0,1];R™)) and po, 1 € P2(R™). If for some
(and thus all) z € R™

/e—x—z2—|y_z2d<eo, 61)#R(xay) < +0o0,

then, for every n € P(C([0,1];R™)) such that (eo)xn = o, (e1)xn = 1, Hr(n) is well
defined.

Proof. Consider W = |eg — z|? + |e; — z|*. Using the change of variables formula,
/ edR = /e"m_zl_'y_zld(eo,61)#R(x,y) < 400
C([0,1];R™))

and if n € P(C(]0,1];R™)) such that (eg)xn = po, (e1)#n = p1, using the fact that
fo, 11 € Po(R™),

/ Wdn = / leo — z|*dn + / ler — z|*dn =
C([0,1;R™)) C([0,1];R™)) C([0,1];R™))

— [l = Paue) + [y - 2Pdpa(y) < +oc.

(4.13) Definition Consider R € R (C([0,1];R™)) and po, 1 € P2(R™). Suppose for
some (and thus all) z € R™

/exZQ|yZ2d<€07 61)#R(1',y) < +00.
In the so-called dynamic Schrodinger problem we look for

inf {Hr(n) : n € P(C([0,1];R™)) : (e0)sn = o, (e1)4n = pu }-

(4.14) Proposition Consider R € R (C([0,1];R™)) and po, p1 € Pa(R™). Suppose
H (1o ® pi|(eg-€1)#R) < 400 and for some (and thus all) z € R"

/e—x—z2—|y_z2d<eo, 61)#R(xay) < +00.

If the dynamic Schrodinger problem admits a solution, the latter is unique.
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Proof. Using Proposition (1.23), Hg is strictly convex where it is finite, so the uniqueness

follows. m

(4.15) Lemma Consider R € R (C([0,1];R™)) and po, p11 € P2(R™). Suppose for some
(and thus all) z € R"

/6—|:1c—z|2—|y_2|2d(eo7 @1)#R($, y) < +00.

For every n € P(C([0,1); R*)) such that (co) 4 = po, (e1) 41 = 1

He(1) = Heepen) o (€0, 1)) + / He., (ney)d(c0, 1) 41( ).

Proof. 1t is sufficient to write [41, Theorem (1.6), (c)] for n and R, applying both sides
log, integrating with respect to 1 and then applying Proposition (P.6). =

Let us now analyze the connection between the primal formulation and the dynamic

formulation of the Schrodinger problem.

(4.16) Theorem (Follmer) Consider R € R (C([0,1];R™)) and po, 1 € Po(R™).
Suppose H (o @ p11](eg.e1)£R) < +00 and for some (and thus all) z € R®

/€—|m—2|2—|y_z|2d(60,61)#R(x7y) < +00.

The following facts hold true:

(a) if n € P(C([0,1];R™)) is the solution to the dynamic Schrédinger problem, then for
every B € A(C([0,1];R™))

0(B) = / Ry (B)d(eo, e1)41(z,y)

and (eq, e1)xn is the solution to the Schridinger problem,

(b) if v is the solution to the Schrodinger problem, then n € P(C([0,1]; R™)) such that,
for every B € A(C([0,1];R™)),

n(B) = / Rey(B)dr(x, 1),

is the solution to the dynamic Schrédinger problem.
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Proof. First of all, by Lemma (4.15), if n € P(C(]0,1];R™)) such that (eg)xn =
fto, (€1)#n = pu, then

Ha(n) = Hepunpurl(en 1)) + [ i, (na)dlco. 1))
In particular, since R,,, 7., € P(C([0,1],R™)), by Proposition (1.23), Hg,,(1.y) > 0, so

HR(U) > H(eo,el)#R«eO? 61)#77)

with equality if and only if 7, = Ry, for (eg, e1)xn-a.c. (z,y) € R" x R™.
(a) Let us start proving that for every for every B € Z(C([0, 1];R™))
0(B) = [ Roy(Bldleaser)ne.)
Consider, for every B € #A(C([0, 1];R"))
1) = [ Ruy(B)dleo.er)n(e.)
By construction, we have 7,, = Ry, for (eo, e1)4n-a.e. (r,y) € R* x R" so

HR(ﬁ) - H(eO,el)#R((QO’ 61)#ﬁ) < HR(U)'

By minimality of 7, the previous inequality must be an equality, and using the uniqueness

of the minimizer, it follows that 77 = 7.
Now, consider any 7 € I'(uo, 1) and define for every B € Z(C(|0, 1];R"))
#(B) = / Ruy(B)dr(z,1).

By minimality of 7, it must be Hg(n) < Hgr(7). By the way,

H(Eo,el)#R((e()? 61)#71) = H(60,€1)#R((€07 61)#77) + /HRzy (Ua:y)d(eoa 61)#77(17 y) = HR(T/) <

< HR(W) = H(Eo,el)#R((e()? 61)#ﬁ) = H(60761)#R(7T)7

so (eg, €1)4n is the solution to the Schrodinger problem.

(b) Consider any 77 € P(C([0, 1];R™)) such that (eg)47 = po and (e1)x7 = p1. Then, by
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minimality of ~,

HR(ﬁ) > H(eo,e1)#R((607€1)#ﬁ) > H(€0761)#R(7> = HR(n)v

and the result follows. =

(4.17) Corollary Consider R € R (C([0,1];R™)) and po, 1 € P2(R™). Suppose
H (10 ® pi|(eo-e1)4R) < 400 and for some (and thus all) z € R™

/e|xZ|2|yz|2d(eo, 61)#R(:Ua y) < +00.
It results

o Hieoen)yr = inf {Hr(n) : n € P(C([0,1];R")) : (eo)#n = 1o, (1) pn =} -

Proof. 1t is a matter of reasoning exactly as in Follmer’s Theorem. =

3 Comparison

With the introduction of the Wiener measure ﬁg, namely that measure having
rs0o ® L™ as joint law at the times 0 and 1 and whose disintegration with respect to
(eo,€1) is a family (indexed by (z,y) € R" x R") of Brownian bridges with variance §,
it is possible to dynamically visualize the example (1.30).

By the fact that {ﬁg} . satisfies a large deviation principle with rate function

3

I = 3 A,, using [44, Theorem 3.4] and [44, Theorem 3.5], we get

I'—limeHg =1.

e—0 5

In particular, using the coercivity of I,

ligmin { Fig_ (1) 1 € PAC(0, 1FRY) : (eo)n = oy (ex) g = i | =

e—0 5

=mm{/‘ hm:nGPKﬂQHﬂWN%%anuAQMnZV}
C([0,1];R")

and the (unique) minimizer of Hg_ converges to the (unique) minimizer of the dynamic
2
optimal transport problem.



Chapter 5
Benamou—Brenier formulas

Also in this chapter, we will consider, as an environment, R" equipped with the

Euclidean distance.

1 Continuity equation

In the Theory of Continuous Bodies, the Law of Conservation of Mass in Eulerian
form, namely written in a reference system that fixes space rather than the material

points moving within it, is expressed by the so-called continuity equation, namely

ap

T + div(vp) =0,

where p is the mass density function of the body and v its velocity field, both in Eulerian
coordinates. Further information on continuous bodies can be found in [5] or, for
non-Italian readers, in [32].

Since we describe mass using the language of Measure Theory, and to allow a more
in-depth theoretical study on the existence of solutions, we need a distributional form of

the equation.

(5.1) Definition Let T € ]0,+00], ¢ > 0, iy : |0, T[ — M(R"™) be weakly continuous
and a Borel function v :]0,T[ x R™ — R™ such that

(t,z) — vy(x),

where the function {x — |vs|} belongs to L'(u;) and the function {t b HthLl(,U«t)}
belongs to L},.(]0,T[), and i € M(R"™). We say that u; is a distributional solution of

loc
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the continuity problem, namely

% -+ diV(Ut/,Lt) = 0,

Mo = H,

if for every p € C°([0,T] x R™) it holds

/OT/ (aaf(t, z) + v (x) - Dyl(t, x)) dpy () dt + /‘P(O’x)dﬂ —0.

In particular, we say that p; : 10, T[ — M(R"™) weakly continuous is a distributional

solution of the continuity equation, namely

0 ,
% + le(Ut,U/t) = 0,

if for every p € C°(]0,T[ x R™) it holds

/O / (gf(t, ZL“) + Ut(:L’) . Dgp(t, :E)) dut(a’;>dt = 0.

The pair (pg, v¢), where py is a distributional solution of the continuity equation defined

by vy, is called continuity pair.

The technical assumptions are required to have the integrals well defined. By the
way, the basic idea of the definition is the interpretation of a measure as a distribution.
The reader interested in further information about Distribution Theory can read [59,
Part I1].

Proving that a curve of measures is a distributional solution of the continuity equation
can be tricky using the definition. Let us look at a useful equivalent formulation that

speeds up the process. We prove first a technical Lemma.

(5.2) Lemma The family
N
D = {Z a;p; -y € C(]0, +00]), @ € CF(R™), N € N}
i=1
is dense in C°(]0, +o00[ x R™).

Proof. 1t is sufficient to apply a variant of the Stone-Weierstrass Theorem. m

(5.3) Proposition Let j; : |0,4+00] = M(R™) be weakly continuous and a Borel
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function v : )0, 400 x R" — R™ such that
(t, ) — wu(z),

with the function {x — |v|} belonging to L'(us) and the function {t — ||Ut||L1(Mt)}
belonging to L},.(]0,+o0|). The following facts are equivalent:

(a) g is a distributional solution of the continuity equation,

(b) for every ¢ € C°(R™) the function {t > fgp(a:)d,ut(:p)} € AC)oc(]0, +00[) and its

weak derivative s

d

& [t = [ Dota) - ulw)du(a).

Proof. Let us start by saying that, by Lemma (5.2), linearity and the dominated
convergence Theorem, it is sufficient to consider tests of the form ayp, where a €
C°(]0, +00[), p € C*(R™). Then

/0 ) / (o' () (x) + a(t)vi(x) - Do(x)) dye(z)dt =
:/OOO (a/(t)/(p(x)d/it(x)+a(t)/vt(x).Dgp(x)dlut(x)> i@

The previous equality proves both implications. =

Let us immediately see a first application to the optimal transport theory of the
distributional interpretations of the continuity equation: geodesics in Py(R™) are solutions

of a continuity equation.

(5.4) Proposition Consider pg, 11 € Po(R™) with py < L™ Then p, the geodesic

connecting o and py, is a distributional solution of a continuity equation.

Proof. By Theorem (3.10), there exists a unique, up to po-negligible sets, minimizer T’

for the problem
: 1 5
min Elx —T(x)|*dpo(x) : T : R™ — R"™ Borel, Ty = p1 ¢ -

Furthermore, by Corollary (4.9), we also know that the constant speed geodesic from g
to py is

pe = (Ty)ghto
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where
T, = (1 —t)Id+tT.

Now, for every ¢ € C2°(R") and for a.e. ¢t € 0, +o00[ we have, by differentiation under

the integral sign Theorem,

d d
G| e =5 | o) duta )= [ DeTifa)) - (T = 1) w)dno) =
-/ Dso(fr) - (<T 1) o 7,71 ()dpu(a).
Naming
Id— 7,1
o= (T =)o T = ————

and using Proposition (5.3), we obtain a continuity equation for i, namely

0 :
% + div (Utﬂt) = 0,

interpreted in the distributional sense. =

We conclude the section by reporting the following Lemma, without proof, which

will be useful later.

(5.5) Lemma Let (us,v;) be a continuity pair and f € H*(R"). Then the function
{t — ffdut} is absolutely continuous and for a.e. t € [0,1]

d
dt/fdut

where the exceptional set can be chosen to be independent of f.

< /‘DfHUtklﬂt,

Moreover, if the function {t — f;} belongs to
AC([0,1]; L*(R™)) N L([0, 1); H'(R™)),

then the function {t — [ ftdut} is absolutely continuous and for a.e. t € [0, 1]

([ i)l = [t S [ )

Proof. See [27]. =
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2 Optimal transport

We are now interested in rewriting the optimal transport problem as a distributional
fluid-dynamic problem: in particular, a problem of curves of measures subject to the
continuity constraint.

First of all, let us introduce the functional we want to minimize: the quadratic action.

From a physical viewpoint, it can be interpreted as a rescaling of the kinetic energy.

(5.6) Definition Consider ;1 € P2(R") and v : R* — R™ a Borel vector field. We

define their quadratic action as
Atw) = [ oy

In the following, we will need to use the standard Gaussian several times, so we

establish the following Notation.

(5.7) Notation We denote with p the function in C*°(R™) such that

e_‘xP

ofx) = [ e l=Pdcn(x)

and for € > 0,

0:(x) = i@ (I> :

en 9

(5.8) Remark Switching from Cartesian coordinates to generalized spherical ones, we

can state that

/]:v|29(x)d£"(x) ~ / r" e dr < 400.
0

(5.9) Lemma Consider u € Po(R™). For every e >0, u* o. € C*°(R"™) and p* o. > 0.
Furthermore, as € — 0%, (u* 0.) L™ — p in (Po(R™), W3).

Proof. First of all,
pox oe(z) = /Qe(w — y)dp(y).

In particular, pu * 0. € C*°(R") and p* g. > 0.
Now, consider for every B € #(R" x R")

)= [ [ oo~ )AL () d(o),
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where B, = BN {(z,y) € R" x R": y € R}, namely a fiber of B. Then, using the

change of variables z = =¥,

W2 (1, p* 0-L") < /|x —yPPdS.(z,y) = //!x —ylo-(z — y)dL™(y)dp(x) =
[ [l sk (F2Y) detyanta) -
= et [ [1sPotnaer rin =) [1roie ) =
=< [|oa(:)cn ),

so Wi(p,pp*0.L") —0ase—0". m

The next is the main result of the section, where we show that the optimal transport
problem is equivalently reformulated through the minimization of the quadratic action
functional subject to the continuity constraint. As regards the < inequality, arguing
by density, using a convolution of measures, we have proved that it is sufficient to deal
with the case of sub-linear growth of the vector field v;: for this specific case, the proof
is a direct computation that requires the flow of the vector field. For the > inequality
and the existence of the minimizers, we explicitly build the curve of measures and the
vector field using geodesics in R™ and Lemma (P.10). All the ideas are expansions of

the contents taken from [1].

(5.10) Theorem (Benamou—Brenier formula) For every pg, 1 € P2(R™) it holds

1
W2 (o, 1) = min {/ A(vg, pig)dt = (pe, v¢) continuity pair, g : [0, 1] — PQ(R”)}.
0

Proof. First of all, let us start proving

1
W3 (o, 1) < inf {/ A(vg, pig)dt = (e, v¢) continuity pair, g : [0, 1] — PQ(R”)}.
0

Take p; a distributional solution of

0 :
% + div(vgpe) =0

with v; smooth and with no more than linear growth. By [1, Proposition 16.4],

e = (Xt)#/m,
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where X, is the flow of v;. Considering the admissible plan ¥ = (Id, X7).x /0,

Wi (o) < [l =yl aS(e.y) = [ IXola) = i) Pdpa(s) =
a/:i&umwmm5[KM&mw3mm

so, by Holder’s inequality and Fubini-Tonelli’s Theorem,

wmwu_//mx>an //mx ) Pdpio ()t
:/0 /|’Ut|2d,u0dt:/0 A(vy, py)dt.

In the general case, consider for every t € [0, 1]

" Vg pty * 0 L7
i =t x 0L, =
t

Observing that p is a distributional solution of

O
E + le(Ut ,ut) O

by the previous case (see [3, Proposition 8.1.8] for details on the growth),

1
W@waﬁ)ﬁﬂ-ﬂﬁﬁmﬁ

Now, denoting for every B € Z(R") and every x € R"

1
vo(B) = To— 9 /B 0-(x = y)dpi(y),

L/UKUWMJW < [lwPaniy

L/fgg%%if)mmw\s ol el —9) 4

by Hélder’s inequality,

SO

(y) [ oc(z — y)dpe(y)
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or, in other words,

[ ew)e=(z — y)dui(y ‘ Jlon(w)Po-(x = y)dp(y)
|[o-(z —y)dm(y)>  —  [o(z—y)dmly)

Multiplying both sides by

/ 0= (7 — y)du(y)

and integrating in z we get

y)dpe(y
/Ulf@)a:c— dutﬂ ‘ /Qex— y)du(y)dL" (z) <

<[/ |Utf o 58_33 _duz?”)t( v) / 0=( — y)dpu(y)dL" (),

so for every t € [0, 1]

A1) = (i < [lur ( [ oo y)dc"<x>) () = Alve 1)

Reassessing,
1
W3 (15, 15) < / Aoy, pe)dt
0

therefore

Wa(po, 1) < Walpo, pg) + Walpg, 1) + Walpy, ) <

1
< Wa(po, p1) + </ A(vnut)dt) + Wa(pi, )
0
and, by Lemma (5.9), passing to the limit as ¢ — 0%, we obtain

1
W2(10, 1) < / Alwr, i)t
0

s0, passing to the infimum for i, the desired inequality comes.

Let us now prove the converse inequality and the existence of a minimizer. Fix

Y. € T'(po, p11) and for every ¢ € |0, 1] consider the function e; : R™ x R™ — R™ such that

e(r,y)=1—-tr+ty=z+tly—a).
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Take the geodesic
pe = (e) 4 2.

Clearly,
[le = Sy <+,

so, by Lemma (P.10), for every ¢ € ]0, 1] there exists v; € L*(R™, uy; R™) such that

(er)x(y — )X = vy and
||UtHL2(R",,ut;R") < ||y - $||L2(Rann,2;Rn) = W2(/~LO’/~L1)-

In particular,

Wy (po, 1) 2 0ellZ2@n ooy = | forl*dpse = Ave, )
R”l

S0, integrating both sides in ¢,

1
(5.11) W3 (o, 1) > / A(vy, i) dt.
0

Now, given ¢ € C°(R")

d d
G [ =5 [ ete )iz

and, by the differentiation under the integral sign Theorem,

jt pdyi =/Dso(et(:r,y)) (y — z)dX(z,y) :/DSO'Utd,U«h

so, by Proposition (5.3), y, is a distributional solution of

0 :
% + div(vepe) = 0,

then p; is a minimizer and the proof is complete. =

(5.12) Remark Combining Benamou—Brenier Formula with Theorem (4.3), we obtain

min { / AN £ € PO X)), o) = (o) = } _

1
= min {/ A(vg, pg)dt = (g, vy) continuity pair, u; : [0,1] — PQ(R”)} :
0
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Let us see an application of the Benamou-Brenier formula to functional inequalities

taken from [1].

(5.13) Proposition Let (u,v;) be a continuity pair such that {t — A(vy, )} belongs
to L*(0,1). Then p, € AC?*([0,1]; Po(R™)) and |u,|> < A(vy, p1e) for a.e. t €10,1].

Proof. Up to a rescaling in the Benamou—Brenier Formula, for every s,t € [0, 1] with
s <t it holds

t
W3 () < (¢ = 5) [ Alor pan)d(r),
so the results follow by Lemma (P.37). =

Up to a generalization of the technique used to prove the > inequality in the

Benamou—Brenier formula, we obtain the following result.

(5.14) Theorem If p; € AC?([0,1]; Po(R™)), then there exists a time-dependent vector
field vy such that (g, vy) is a continuity pair and for a.e. t € ]0,1[ it holds

A(Utnut) = ’N;F-

Proof. First of all, by [1, Remark 10.8], there exists n € P(C([0,1]);R™) such that
supt(n) € AC?([0,1]; R™) and

1
(5.15) / Aa(7)dn() < / PALY(t) < +oo.
C([0,1];Rn) 0

Using Fubini-Tonelli’s Theorem,

1
/ ( / IV’IQ(t)dn(7)> 4L (1) < +oo,
0 C([0,1];R")
so for a.e. t € ]0, 1] it holds
/ o P()dn() < +oo.
C([0,1];R")

In particular, for a.e. ¢ € ]0,1] is well defined {y— +/(t)} € L*(C([0,1];R™),n, R"),
therefore, by Lemma (P.10), for a.e. ¢ € ]0, 1] there exists v; € L*(R", juy; R™) such that
(e) (¥ (t)n) = vepy and

(5.16) vell 2@ ey < 1Y ()22 0.118m) i)
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Given ¢ € C°(R"), by differentiation under the integral sign Theorem,

jt pdpy = jt p(y(8)dn(y) = /[01]Rn Dyp(~(t)) -7 (t)dn() =

/DSO (e)# /DSO (vept) /DSO ved i,

so, by Proposition (5.3), (1, v;) is a continuity pair.
Now, by (5.16), Fubini-Tonelli’s Theorem and (5.15),

/ " v, (1) = / 1 ( / Iw\Qdut> ac'i < | 1 ( / . Rn)\w’!?(t)dw) ac' (1) =
o (/ P0ac o) ant) = [ o Aa)0) <
/ i 2d L ¢

and, by Proposition (5.13), for a.e. t € ]0,1]
(5.17) P < Alve, ).

Let us prove that for a.e. ¢ € ]0,1[ it holds A(vy, 1) = |u}|?. By contradiction, suppose
there exists B € 4(]0, 1[) such that £!(B) > 0 and for every ¢t € B

A(vr, 1) 7 1%,
that is, by (5.17), for a.e. t € B

| |* < A(ve, pie).-
Observing that

/ Ay, p)dLM ¢ / A, i) dLM(E) + /] Al pac ) >
0,1[\B

> / AL (E) + / Alvn, j)dL (1) =
B 10,1\ B

1
— [ Wit
0

we arrive at the desired contradiction, so the result follows. m

Finally, thanks to the previous Theorem, we can exhibit this useful estimate.
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(5.18) Corollary Consider u; € AC?([0,1]; Po(R™)). For every f € Lip,(R™) N C*(R"™)

it holds X N
| [ sim— [ awo| < [ ( / |Df|2dut)2 L ().

Proof. By Theorem (5.14), there exists a time-dependent vector field v; such that (p, v;)

is a continuity pair and for a.e. t € ]0,1[ it holds

Hth%Q(R”,ut;R”) = /‘Ut|2d/it = -A(’Ut,/it) = ’/4’2,

then
HthLZ(R”,m;R”) = |Mf:|~

For every h € N consider a cut-off function ¢ € C2°(R") such that 0 < ¢ <1 in R™ and

¢ =1 on B(0,h). Take
fn=CRuf € CZ(R").

/O 1; ( / fhdut> dct

By Proposition (5.3),

|/fhdu1—/fhduo

so, by Holder’s inequality,

‘/fhdm—/fhduo

<

/O1 (/th-vtdut> dﬁl(t)',

1 3
< [ (f100a) oozt =
0
1 3
- [ (fioara) aco,
0

The estimate follows by the dominated convergence Theorem. m

3 Fokker—Planck equations

The simplest equations of (continuous) motion for a system of floating particles are

the Fokker—Planck equation backward or forward, namely

op . op ..
- = — 4+ =cA
T + div(vp) = cAp, T div(vp) = cAp,

where p is the probability distribution of the system and v its velocity field, both in

Fulerian coordinates. They are mainly used to describe small Brownian systems, a
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current in an electrical circuit and the electric field in a laser. Further information can
be found in [58]. As in the case of the continuity equation, we need a distributional

form.

(5.19) Definition Let T € |0,+o0], ¢ > 0, p; : 10, T[ = M(R") be weakly continuous
and a Borel function v :]0,T[ x R" — R™ such that

(t, ) — wu(z),

where the function {x — |vs|} belongs to L' (i) and the function {t — ||| 1 () }
belongs to L},.(]0,T]), and m € M(R™). We say that ji; is a distributional solution of
the backward Fokker—Planck problem, namely

—%t + div(vgpy) = cApy,
Ho

=M

if for every ¢ € C°([0,T] x R™) it holds

/ / (— (t,x) + ve(x) - Dp(t, x) — cAgo(t,x)) dp(x)dt + /@(O,x)du = 0.

In particular, we say that p = 0, T[ — M(R™) weakly continuous is a distributional

solution of the backward Fokker—Planck equation, namely

O

8tt + div(vgpey) = cApy,

if for every o € C°(]0,T] x R™) it holds

/ /(— (t,z) + v (x) - Dp(t, ) — cAgo(tJ;)) dyy(z)dt = 0.

The pair (p, vy), where p; is a distributional solution of the backward Fokker—Planck
equation defined by vy, is called backward Fokker—Planck pair.

(5.20) Definition Let T €]0,+00], ¢ > 0, p : 10, T[ = M(R") be weakly continuous
and a Borel function v :]0,T] x R" — R™ such that

(t,z) — vy(x),

where the function {x — |vs|} belongs to L'(u;) and the function {t > HthLl(ut)}
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belongs to L},.(]0,T[), and @ € M(R"™). We say that u; is a distributional solution of
the forward Fokker—Planck problem, namely

% + div(vgpy) = cApy,
Ho = M,

if for every p € C([0,T[ x R™) it holds

/0 / <%t0(t,x) + v () - Dp(t, x) — cAp(t, a:)) dp(z)dt + /90(0, x)di = 0.

In particular, we say that py = 10, T[ — M(R™) weakly continuous is a distributional

solution of the forward Fokker—Planck equation, namely

O

BT + div(vgpy) = cApy,

if for every o € C°(]0,T[ x R™) it holds

[ [ (50wt Dott.a) - cett.o)) duGoran o

The pair (ug, v), where puy is a distributional solution of the forward Fokker—Planck
equation defined by vy, is called forward Fokker—Planck pair.

Also in this case we can exhibit a useful equivalent formulation that speeds up the

process of proving that a curve of measures is a solution of the Fokker—Planck equations.

(5.21) Proposition Let ¢ > 0 and p : 10, +00] = M(R™) be weakly continuous and a
Borel function v : ]0, 400 x R™ — R"™ such that

(t,x) — vy(x),

with the function {x — |v|} belonging to L'(u;) and the function {t — ||’Ut||L1(Mt)}
belonging to L},.(]0,+o0c[). The following facts are equivalent:

(a) p is a distributional solution of the backward Fokker—Planck equation,

(b) for every ¢ € CX(R™) the function {t — fgp(a:)dut(m)} € AC,.(]0, +00]) and its

weak derivative is

jt / pdpy(r) = — / (Dep() - vi() + cAp(x)) dp ().
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Proof. 1t is similar to the proof of Proposition (5.3). m
(5.22) Proposition Let ¢ > 0 and p : 10, +00] = M(R™) be weakly continuous and a
Borel function v :]0,4+00] x R" — R™ such that

(t, 2) — v (x),

with the function {x — |v|} belonging to L'(u;) and the function {t — ||Ut||L1(Mt)}
belonging to L},.(]0,+o0|). The following facts are equivalent:

(@) py s a distributional solution of the forward Fokker—Planck equation,

(b) for every ¢ € CX(R™) the function {t — fgo(x)d,ut(:c)} € ACio(]0, +00[) and its

weak derivative s

d

4 i) = [ (Dot (@) + ep(@)) i),

Proof. 1t is similar to the proof of Proposition (5.3). m

We conclude the section by reporting the following Lemma, without proof, which

will be useful later.

(5.23) Lemma Let ¢ > 0 and (fu,v¢) be a backward (resp. forward) Fokker—Planck pair
and f € D(A) C HY(R™). Then the function {t — ffd,ut} is absolutely continuous

and for a.e. t € [0,1]
d
— d
dt/f He

where the exceptional set can be chosen to be independent of f.

< / (D Fller| + el AF]) dpu

Moreover, if the function {t — f;} belongs to
AC([0,1], L*(R™)) N L*=([0, 1], H'(R™))
and the function {t — Af;} belongs to

L=([0, 1], L*(R™)),



120 CHAPTER 5. BENAMOU-BRENIER FORMULAS

then the function {t — [ ftd,ut} is absolutely continuous and for a.e. t € [0,1]

(i) 3 )

Proof. See [27]. =

4 Schrodinger problem

We have already underlined in Example (1.30) that given ¢ > 0, considering R
reL" @ L", where

=
2

1 |z—y?
%(I y) = m‘f 2e
and given pu,v € P(X) such that p,v < L", HR% is well defined on I'(i,v). In this
section, we would like to focus on this situation and show that the Schrodinger problem
can also be reformulated, producing a Benamou—Brenier formula. In particular, we will
consider only the case of py = 00L", u1 = 01L" € P(R") with bounded densities and
supports following, mainly, [27] in which can be found the generalization in the curved
and possibly non-smooth setting. With these assumptions, it is not restrictive to assume
that every continuity (resp. backward Fokker—Planck or forward Fokker—Planck) pair

(14, vy) verifies
(5.24) 3C>0Vte[0,1]:u <CL"

Once the framework of hypotheses has been defined, the first thing we can say is that
we continue to have existence, uniqueness and the structural formula for the solution of
the Schrodinger problem stated in Theorem (1.28).

(5.25) Corollary For every € > 0, there exists a unique minimizer v of Hr. in
2

I'(po, pi1)-

In particular, there exist f¢,g° € LY(R™) N L>®(R™), unique a.e. in R™ up to a
rescaling {(fa, g°) — (cfe, %)} with some ¢ > 0, with supports included in supt(uy) and
supt(uy) respectively, such that

= (f*®g°)R:.

Proof. 1t is a direct consequence of the Theorem (1.28). m
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(5.26) Notation For every ¢ > 0, for every € R", let us denote

fo(z) if =0,
W r o
fE(y)re (z,y)dL" (y) iF0<t <1,
g;(z) = /gg(y)r“;*(x’?/)dﬁn(y) if0<t<l,
g; () o

Furthermore, let us denote

00 lftIO, Mo lft:O,
o =\ ffgi if0o<t<l, p; = oL if0<t<l,

Finally, let us denote for every ¢ € [0, 1]
pr =clog 7, U = elogyg;

and 95 = § (5 — ¢f).

We collect in the following Lemmas the main technical results necessary for the

purposes of the section.

(5.27) Lemma For every € > 0, the following facts hold true:

(a) for everyt € [0,1] the functions ff, g5, 05, ¢, vs and 95 are well defined,
(b) for everyt € [0,1] u5 € Po(R™),

(¢) the function {t — H(us|L™)} is continuous on [0, 1],

(d) for everyt € [0,1] it holds ff,g: € D(A) C H*(R"),

(€) for everyt €0,1] it holds of € D(A) C H'(R"),

(f) for every t € [0,1] it holds o5, v, 95 € D(Aje) € HY(R™),

(g) the functions {t — f£},{t — g5} belong to

C([0,1), L*(R"™)) N ACioc([0, 1], H(R™)) N L*([0, 1], L=(R™))
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and for a.e. t € [0, 1]

8ff_5 . 8g§_ €
ot — 9 It ot 2 9t »

(h) the function {t — o} belong to
C([0, 1], L*(R™)) N AC([0, 1], L*(R")) N ACi.(J0, 1[, H'(R")) N L=([0, 1], L*(R"))

and for a.e. t € [0, 1]
Do

ot

+ div(D¥gf) = 0,

(1) for every T € R™, for every compact K in [0, 1], there exists M > 0, depending only
on 0o, 01, K, T, such that the functions {t — @} {t — Y} {t — ¥} belong to

AC(K,H*R"™ e VL)),

where V(x) = M|z — T|?, and for a.e. t € [0, 1]

op; 1 2 € ovi _ 1 242
= Z|Dgi P+ S At g = 5 PUlT+ A
o 2‘ ©°| _|-2 w5, ot 2’ Y| +2 Wy,
o 1 e? . ¢
877; +§|D79t|2 = ~3 (2Aloggt + |D10th|2)7

(j) for every 6 € )0,1[, for every T € R™ there exist C,C" > 0, depending only on
00, 01, T, and C" > 0, depending only on oy, 01, T, 9, such that

Vtel0,1], ae e R": g;(x) < Clo—C'le—7P
Vite [5, 1]7 a.e. in R™ : Lip(g@f) + Lip<¢i—t> < C//(l 4 | - Tl),

(k) it holds

1 1
// | DS |?ofdtdL? < +o0, // | Dys P oSdtdL? < +oo, |DY5|?eidtdL? < +oo.
0 0

Proof. See [28]. =

(5.28) Lemma For every e,t € 10,1 and any p € N, let us denote with hi any of
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o5, 05,95, log of and with H; any of
oi|Dhel",  oilog of| DRE[”,  [Dep|[Dhil?, Agi|Dhel?, opDhy - D(ARE).

Then, Hi € L*(R™). Moreover, for every d € }0, %[ and every T € R™ we have

lim sup / |H;|dL" = 0.
R—=+00te(51-8] J X\B(7,R)

Finally, the function {t — fodE”} defined on 10, 1] is continuous.
Proof. See [28]. =

(5.29) Lemma Consider u € L*(R™) N L>®(R"™) positive a.e. in R", § > 0 and, for
everyt > 0,

ei(o) = tos [ et ) +5).
The following facts hold true:

(a) there exists C' > 0 such that for everyt >0

1€} || 2 @y < C,

(b) for all x € R™ and M > 0, the function {t — @f} belongs to
C([0, +oo[, LA(R", ™" L")) N ACiuc(]0, +oo[, L*(R", e~ L)),

where V (y) = M|z — y|?, and for a.e. t >0

ol

DEZ + A
5 |e:|+e:

(c) the functions {t — |D(’If|}, {t — A(’If} belong to Li2.(]0, 400, L*(R™)),

(d) let py in P(R™), where t > 0, be weakly continuous with p, < CL™ for some C' > 0,

independent of t. Set n, = gﬂ% and denote with H? any of
Qf% ‘Q:f'Znt» |D€§‘nt> |€f|277t-

Then, H? € L*(R™) for every t,d > 0 and, for any compact K in ]0,+oo[, the
function {(t,x) — Hf(a:)} belongs to L*(K x R™ L' @ L™).
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Proof. See [27]. =

Now that we have summarized the entire technical system, we can proceed to show
some dynamical representation formulas. The whole proof essentially relies on the use
of the Gauss—Green formula and on the explicit representation of the minimizer of the

Schrodinger problem.
(5.30) Proposition For every e > 0, one has

: € n n
e min Hr. = = (H(uo | L")+ H(u | £7)) +
T(posn) 2 2

1 1 52
+ // <2|D19§|2 + §|D10g g§|2> ofdtdL".
0

Proof. Consider R > 0 and a cut-off function ¢ € C2°(B(0, R + 1)) such that 0 < ( <1
and ¢ = 1 on B(0,R). By Lemma (5.27), of € AC([0,1], L*(R")) and for every
compact K in [0, 1] there exists M > 0 such that ¥¢ € AC(K, HY(R", e~V L")), with
V(z) = M|z|*. In particular, the function {t - fQ?igde”} belongs to AC),.(]0, 1[)
and for a.e. t € ]0, 1], using properties of the Bochner integral (see, for example, [26])
and Lemma (5.27),

d g £ n d g £ n € d g n
G [evgacr = [ cGorac v [ oo ferac
so, by Lemma (5.27),

d g € n 1 15 62 (3 & (3 n
dt/wtatdﬁ Z/C <_2|D19t’2 -y (2Alog 65 + IDloth!2)> 0rdL"+
— /Cﬁfdiv(Dﬁf@f)dﬁ" =
1 €12 € n 82 e € n
-5 CIDY; | 0pd L™ — n (Alog gy o;dL"+
g2 . €€ n
-5 [apoggiPaac - [ cora(poigic
Using the Gauss—Green formula, and the fact that R™ has no boundary,
1
/CAlog 0ropdL" = —/D(Cyf) - Dlog gdL" = —/D(Cgi) : EDgidﬁ" =
t
1 1
— [ D¢ Dajic - [ ¢.Dei - Deieidc” -
Ot Ot

= —/DC-DQ,de”—/C\D10g9§|2@§dﬁn
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and

/ COEdiv(DVE of )dL = / D(C0%) - DYl dLr =

- [ apsipgact - [ winc- poigac,

SO

d e € n 1 £12 € n 52 £12 € n

pr CUyordLl" =5 C|DV;|"ofdL +3 (D log of|"0jdL" +

+/DC-DQ§d£"+/195DC DV g5d L™,

Take § € ] { and integrate both sides with respect to ¢ between § and 1 — ¢ to obtain,

again using the properties of the Bochner integral,

1 1-6
[ it der~ [ g =3 [ [ cpoipgaac
1)
52 1-6
+8// ¢|Dlog o | oidtdL"+
1)

1-6
+ / DC - DgEdtdLr+
1

1-6
+ / / 9EDC - DYE gidtdL".
1

Now, we want to pass to the limit as R — co. As regards the terms

1 1-4 2 1-8
5| apvircac 5/ apusdraaac
J §

using the monotone convergence Theorem, we can pass the limit under the integral sign.
For the other terms, we can apply the dominated convergence Theorem: indeed, Lemma
(5.28) ensures the validity of the a.e. convergence and the L'(R") bounds. We then get

1
(5.31) /ﬁi_agi_gdﬁn—/ 5@5dﬁn—// (2!D19§!2 —|Dlog @tl2> ojdtdL".

Now, by the fact that § € ]0, %[ co, 1],

elog 05 = clog f5sg5 = clog f5 + clog g5 = @5 + v,

so 5 = elog 05 — 15, then J5 = 5 — 5 log 05. Analogously, we can prove the identity
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15 = —¢i_s + 5logoi_s, so we can rewrite (5.31) as

: ( [1ogigzac+ [on Qi_agi_adﬁ"> +
1=0 79 g2
— (/@DEQEdE” +/wi_59i_5d5”> = //5 <2|D19§|2+ S |Dlog Q§|2> ojdtdL".

Passing to the limit as 6 — 0, in the right-hand side we can use the monotone convergence

DO ™

Theorem and in the left-hand side the dominated convergence Theorem combined with
Lemma (5.27) and Lemma (5.28), we obtain

( / log 0o00d L™ + / log 9191d£”> +
| g2

— (/w890d£”+/<pigld£”> = // <2|D19§|2+8|D10g9§!2> ofdtdL”,
0

that can be rewritten, using the facts that ¢j 4+ 15 = €log oo and ¢ + Y] = log 01, as

DO | ™

/ ©wo0odL" + / Yio1dL"+

€ e g2
—2( 1oz ovmacr + [ 10g9191d£"> -1/ <2|D19§!2+8|Dlog@§!2) oididc”,
0

or, in other words,
g n g n € n n
[ e+ [ ioder = 5 (Hlna | £7) 4 Hur | £7)+

1 1 52
+ // <2|D19§|2 + §|Dlog g§|2> ofdtdL™.
0

By the explicit representation formula of the minimizer of Hg.,
2

e min Hr. = Hr
T(p0,41) 2

o

(f° © g°Rs) = / cho0dl" + / EordLr,

the result follows. m

(5.32) Proposition For every ¢ > 0, one has

1 1
e min Hg, =eH (p | E")+2// | Dy [* ofdtdL".
0

T'(po,u1)
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Proof. Let us observe that, using the very definition of ¥J; in the continuity equation

solved by o;, . '
Q & € : £ (>
31: iv(o; DY5) = ile(QtDSOt)-

Now, using the fact that ©f + wt = ¢ log of,

00§
ot

1 : £ I E: : £ £ 1 : £ 1>
2 (QtDwt> = idlv(gtDlog Qt) - idlv(QtD¢t)>

then we obtain the forward Fokker—Planck equation

805 : £ g E £
3tt (QtD¢t> = iAQt‘

Arguing in the same way as for Proposition (5.30), we can then find

1 1 .
/sf)idm —/widuo = —2// |Dgs |05 dtdl”,
0

that can be rewritten, using the identity ¢g+15 = 0log gy and the explicit representation

formula of the minimizer of Hg., as
2

£ min HRs =ecH(uo | L") + // |Dys 2 ofdtdL™. m

T(p0,11)

(5.33) Proposition For every e > 0, one has

e min Hg, =eH(uy | L") + // | D) osdtd L™

I(po,pr) 2

Proof. Let us observe that, using the very definition of ¥ in the continuity equation

solved by o7,
dof

ot
Now, using the fact that ¢ + ¢ = log of,

1 s (3 (3 1 : £ g
- idlv(QtDSOt) = _idlv(QtD%)-

896 L. e € €L € € L. € €
att 2d1V(QtD¢t) = _idlv(QtDlog Qt) + §d1V(QtD90t)a

then we obtain the forward Fokker—Planck equation

a (> : (4 £ 8 £
—agt + div(o; D) = iAgt.
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Arguing in the same way as for Proposition (5.30), we can then find

1 1
/widm —/widuo = —2// | D5 | 0jdtd L™
0

that can be rewritten, using the identity ¢g+15 = 0log gp and the explicit representation

formula of the minimizer of Hg., as
2
: n 1 ' €12 € n
e min Hg, =eH(u | L") + = | Dy;|Zo;dtdL" . m
P(no,p1) 2 2 0

We are now ready for the main result of the section: the Benamou—Brenier formula
for the Schrodinger problem. By the fact that we can dynamically represent the problem
in three different ways using the continuity equation or the two Fokker—Planck equations,
we obtain also three different Benamou—Brenier formulas. As regards the first form,
inequality > follows directly from Proposition (5.30) and the fact that ¢f solves the
continuity equation with velocity D¥;. The converse inequality can instead be proved

using a technique similar to the one seen for Proposition (5.30).

(5.34) Theorem (Benamou-Brenier formula, I form) For every ¢ > 0, one has

: € n n
e min Hr, = = (H(po | L")+ H (1 | L)) +
T(po,p1) 2 2

1 2
1, 5 ¢
i — —|D1 2| nudtdl™ y .
* (e L™ ve) gjlr{{ilnuity pair, {/ /0v (2 |Ut‘ + 8 | 8 nt’ > " }

Nmo=e0:M1 =01

In particular, on the right-hand side, the (unique) minimizer is (o5, D).

Proof. Let us start proving that

> 5 (H(po [ £7) + H(p | £7)) +

1 2
1 €
+ inf —|n]? + =|D1 2 mdtdc™
(e L7 v¢) clorrlltinuity pair, {//0 <2 |'Ut| 8 | 8 77t| > " }

no=e0-1m1=201

€ min Hg.
I'(po,p1) 2

By Proposition (5.30), we know that

£ min HR% = E(H(,uo | L)+ H(uy | L)) +

T(p0,p01) 2

1 1 52
+ // <2|D19ﬂ2 + §|D10g Q§]2> o;dtdL",
0
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but, using Lemma (5.27), we can also say that (¢i£", DY) is a continuity pair. In
particular, we can pass to the infimum on the right-hand side, obtaining the desired

inequality.

For the converse inequality, namely

e min Hg, <

T (po,11)

(H(po | L")+ H(pa | L7)) +

1 2
1 €
inf “lo)? + =|D1 2 dtdL”
+(77t£"7vt) inf pair’{ / /0 (2!vt| + 8| og 1| )’Ot ,

N0=00:11=21

DO ™

[N}

we can, first of all, observe that the assumptions on ug,u; guarantee the finiteness of

min Hg.
D(po,pun) 2

1 2
1 €
inf —|v|* + =|D1 2| nudtdl™ b =
(neL™,v¢) clolrlltinuity pair, {//0 (2 ‘Utl + 8 ’ 08 nt| ) M E } +OO7

no=e0:M1=2e1

. In particular, if

the inequality is trivially satisfied. Let us, then, focus on the case
1 1 ) 52 ,
inf —lv|* + =|Dlo dtdL™ » < +00.
(neL™,v¢) continuity pair, {/ /(; (2‘ tl 8 ’ g 771‘/’ ) T }
no=ce0,M1=201

We can then restrict to the case where (1,£",v;) is a continuity pair with ng = g, 71 = 01

and

1 2
1
(5.35) // (2]Ut\2 + Z\Dlogn#) mdtdL" < +o00.
0

Consider R > 0 and a cut-off function ¢ € C°(B(0, R + 1)) such that 0 < ¢ <1 and
¢ =1 on B(0, R). Given § > 0, define for every ¢ € [0, 1]

1

it =clogl(fi +0), 0Pt =cloglgi+0), 0% = (i — ).

By Lemma (5.29), ¢95° € AC.(]0, 1[, L2(R™)) N L2, (]0, 1], H(R™)), so, given ty, ¢, €

10, 1], with tg < ¢, Lemma (5.5), applied to (n:.£",v;) and the function {t — Cﬂf’d}

on [tg, t1], gave us for a.e. t € [tg, 1]

d d .. n o d . n
i ([ernact)ici= [ cqoitmac s ([ cornacr) i

As regards the first term in the right-hand side, by the very definition of 19?5 and a
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linear transformation in Lemma (5.27),

/%#956 AL = - /Cdt¢ —/cdtsos mdC" =

_ _2/ (31D + Savi) nacr+

]' £ 6 I n
5 /C (2|D80t’6‘2 + QA%’J) mdL",

and, using the Gauss—Green formula, with the fact that R™ has no boundary, combined

with Young’s inequality and the triangle inequality,

d 1 . . N
/C *19?5 |s=t7ltd£n = —— /C (‘Dwtﬁﬁ + |D90t75 2) nedL"+
ds 4
€ £,0 £,0 n
/<D< o0 1 52%) . Dlog nnd L+
/ D(E® + %) - Denpdcr <
<~ [ C(Due + 1D ) mac+
1 3 £ n 82 n
+5 [ D@+ eiPndcr + 5 [ ADlognPrdc+
/ DS + 5% - DenpdL™ <
s—8/<uwiﬁ+w@ﬁﬁwmm-
62 2 n
+8/C|D10gm\ nedL"+

8 £ £ n
+4/D( t’5+¢t’6)'DC7)tdﬁ :

For the second term, instead, using Proposition (5.3), combined with the fact that
¢ € H'(R™), the density of C°(B(0, R+1)) in H'(B(0, R+1)) (see [24], for example,
for technical details), weighted Young’s inequality and the triangle inequality,

i ([ cormact) 1o = 5 [ (D~ i)t (6 = DG 0) e <
gl/QD<?—@%WWﬁ+§/dm%ﬂm+
/C (5" — @) D¢ - vd L™ <
<5 [ C(uiP 4 1DgE ) e + 5 [ cluPnde+
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/ ¢( NDC - v d L

Resuming,

d 1 g2
ds(/@%’&nsdﬁn)s:t < /C <2|Ut‘2 + 8|D10g77t’2> mdL"+
+€/D( ‘f‘SOt ) D(¢nyd L™+

/ COUED — 20)DC - vy £

Integrating both sides over [t, t1], we get

. . t1 1 52
/ COE AL — / CO m dL™ < / / C<2|vt|2 + §|Dlog m|2> ndtd L+
to

t1

+Z / / D + ) - DCnydtd L™+
to

1 tl 85 65 n

+ 2// C( t7 - gpt7 )DC * ’Utntdtdﬁ .
to

Now, we want to pass to the limit as R — +oo. As regards the first term in the
right-hand sides, we can use, by monotonicity, the monotone convergence Theorem and
for the others we have to combine Lemma (5.29), (5.35) and the dominated convergence

Theorem. We get

2
/ﬁm mldﬁ"—/ o dL" < // ( oe]* + \Dlogm\2)77tdtd£".

Let us now pass to the limit as £y — 0%. As regards the right-hand side, we can use, by
monotonicity, the monotone convergence Theorem. For the second term in the left-hand

side, we can, firstly, observe that

1 - n
/ 79160 N, dL" = B ( / wto Ny dL" — / sotfmodﬁ ) :

tim [ i, de” — / & duo.

to—0t

g

Let us show that

Using the triangle inequality,

| / %5667%0(15” — / ¢8’6duo

1 0
wlfo nto wg

N dL" + ‘/% Utodﬁn—/%’édﬂo-
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By the fact that

1 1

sup |~ <+,

x€]8,+oo| 1T o
we have that log € Lip(]d, +ool), with Lipschitz constant Lip(log |js400) < 5. By (5.24),
n, < C for every t € [0,1] so, combined with the fact that n,£™ € P(R") and Holder’s

inequality,

Vmwmm—/%%m

< 5/‘log(gfo + ) —log(g5 + (5)’77t0d£"+

‘/%nmm—/%%ms

= 5/|9to 96|me,dL" +'/¢o modﬁn—/wé"sduo <

95, — 951°ne, dL+

<|
V%nwﬁ—/%%ms

- 5C||gt0 gOHLQ(Rn |/¢0 ntodﬁn—/@bg’éduo

so, using the fact that {t — ¢} is continuous with respect to L? norm, the first term
in the right-hand side disappears in the limit as t; — 07. As regards the second, using
the maximum principle and the regularity of the solution of the heat equation (see, for
example, [24]), by the fact that ¢ € L°°(R™) and it has compact support, we can state
that g5 € Cy(R™). In particular, w8’6 € Cy(R™), so, by weak continuity of 7,£", also this
term vanishes. Let us also show that

lim 90§(§677t0d£n = / SOg’éd/JU

to—0t

Using again the triangle inequality,
Vﬁﬁmﬁ—/%%mS/%%m—ﬁ%MW+V%%Mﬁ—/%%m-

For the first term in the right-hand side, we can argue analogously to the previous

estimate. As regards the second, by the fact that f¢ has compact support, @8’5 is
constant outside a bounded set: in particular, for every a > 0, there exists g € C,(R")
such that

8
l¢o° — qllr@ny < .
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Figure 5.1: A representation of the density argument in dimension 1. We only have to
consider a piecewise function ¢ defined as follows: unless we take B large enough, there
we can use the density of C°(B) in L'(B); in zones A and C' we can take the (constant)
value that ¢5° have, so € logé.

These facts, combined with 1, < C for all t € [0, 1], that comes again from (5.24),

provide

' / 05 N AL — / w6 dpg

13
< SCHffO — follL2@ny+

+ /|w8’6 — q|m,dL™ + ‘/qmodﬁn - /qduo +

+ /Iw8’6 — qldpo <

£
< SOHffO — folle2mny +2Ca + |/q77t0d£” _ /qdﬂo :

Using the continuity of {t — f£} with respect to L? norm, weak continuity of n£"

and letting o — 0, we arrive at the conclusion. Resuming, we have

lim [ 9% 677t0d£" = /19E 2 dpo,

to—0t

2
/19 Ne, AL — /ﬁe‘sduo // ( v |? + ]Dlognt]2> nedtdL™.

The limit ¢t; — 17 is completely analogous and provides
5 5 ! 1 52
lﬁﬁWr/%%mé//(ﬂ#+gDmmﬁWMﬁ.
0

/W%m /%dm Q/m«ﬁ+Mﬁ+Wmm

SO

Now,
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so, passing to the limit as 6 — 0%, by monotonicity, we get

. £ 5 € n
Mn/m%m:/Qﬂm—jmmw»

6—0+

where both terms in the right-hand side are finite: the second by the assumption on g,
and the first by the fact that

/wwfwﬂww”—/ﬁwl

and ¢$0; € L'(R™) by Lemma (5.28). Analogous considerations can be made for

/ ﬂg’édl’b(]a

SO

£
/widm + /SOSd,Uo < 3 (H(po | £") + H(pa | £7)) +

1 1 52
+//(hﬁ+wmmﬁwmm,
., \2 8

By the explicit representation formula of the minimizer of Hg. and passing to the
infimum over (n,L",v;) we get the desired inequality. i

Combining the two inequalities proved with Proposition (5.30), we get the first part
of the statement.

Let us now tackle the second part of the statement, namely that the problem

1 1 ) 62 )
min —|ve|” + —|Dlo dtdL"”
(neL™,v¢) continuity pair, {//0 <2| t| 8 | gT/t| > e }

no=e0-m1=e1

has a unique minimizer (o7, D95). Consider the convex set
= {(nL",my) = (mL", myve) + (n:L", v4)is a continuity pair, 7o = 0o, M = 01}
and the convex and lower semicontinuous function ® : [0, 400] x R — [0, +00] such that

% if x >0,
Oz, y) =30 if (z,9) = (0,0),

+00 otherwise.
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Figure 5.2: The graph of the function f(z,y) = %2 for x > 0.

In particular, the functionals H, F, A : T' — [0, +o0] such that

1 1 2
H(nt’mt) — 2// |mt‘ dtdﬁn,
0

Ug
1 D 2
< / / D gragn it g, € B (R,
F(ne,my) = o
400 otherwise,
A=H+ F,

are convex too. Thus, if (7,,7;) is a minimizer of

1 2
1, 5 €
min “|v|* + = |Dlogn|* | nidtdL" }
(n¢L£",v¢) continuity pair, {/ /0 <2| t| ] | g nt‘ ) us }

Nn0=00-11=21

setting m; = 7,0y, by Proposition (5.30), A(7,, ;) = A, 0§DV;) so, using the
convexity of A, given A € ]0, 1[ and setting

= (1= X)m + Aef, m} = (1 — Nmy + \oS DV,

we get

A(nt,my) = (1= N)A®@,, my) + NA(of, 0 D).

The same identity holds for F, because of the convexity of H and F, then

(', mp) = (1 = N7, M) + A (of, 0] D).
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By the fact that ® is linear only on the lines passing through the origin, there must
exist, for all ¢ € ]0,1[ and for a.e. z € X, ay(x) such that

(7 | D7]) = (s [ Do)

Since ¢f > 0, it must be a;(x) > 0. Observing that

_
m—gé
it must be _
ap = &
of

In particular, by the fact that ¢of € H'(R"), and it is locally bounded away from 0, and
n, € HL.(R") for a.e. t €]0,1], then ay € H. (R") for a.e. t € ]0,1]. In a similar way,

we also obtain
(7 |Dn]) = (1 = N + A)(f, | Do)

In particular,
D[P = (1= A)ae+2)*[Dgi [P+ (1= )*(0)*| Da |* +2(1 = X) (1 = M +A) ¢; Do§ - Dewe.

Resuming, for every A € ]0,1]

A
|Day|* = —2 <at + 1—)\> Dlog ;- Doy.

By the fact that o; does not depend on A, it must be |[Day|* = 0, then we can say that
oy is constant. Since 7,L", 05 L € P(R™), it must be oy = 1, namely for every ¢ € [0, 1]
we have 7, = pj. The conclusion follows now from the strict convexity of the function

{vt|—>ff01|vt|29§dtd£”}. n
(5.36) Theorem (Benamou—Brenier formula, IT form) For every e > 0, one has

¢ min Hr, = ec¢H L")+
roams Rs (M0| )

1 . 1 9 th . £
+ — min v “ddt - — + div(vyy) = = Avy, Vg = o, V1 = i ¢ -
2 ; ot 2

In particular, on the right-hand side, the (unique) minimizer is (o5 L™, D5).

Proof. 1t is a matter of replacing Proposition (5.30) with Proposition (5.32) in the proof
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of the first form. =

(5.37) Theorem (Benamou-Brenier formula, III form) For every € > 0, one has

e min Hg, =eH (| L")+
L(po,p1) 2

1 . ! 2 6Vt . £
+ — min || “ddt - ——— + div(vy) = =Avy, vg = po, 1 = i ¢ -
2 ; ot 2

In particular, on the right-hand side, the (unique) minimizer is (05 L", D).

Proof. 1t is sufficient to swap o and p; in the second form of the Benamou—Brenier

formula. =

5 Comparison

Using the Benamou-Brenier formulas, we can provide a different point of view
to show the connection between the optimal transport problem and the Schrédinger
problem. If we compare, for example, the statement of the Benamou—Brenier formula
for optimal transport and the first form of the analogous formula for the Schrodinger

problem, namely

1
min C' = min {/ /\vt\Qdutdt : (e, v¢) continuity pair, g : [0, 1] — PQ(R”)}
0

IN(TRY)

. € n n
e min Hg. = = (H(uo | L") + H(p1 | L)) +
F(:U‘Ovul) 2 2

1 2
1 -
+ min 1,2+ =|Dlo 2 dtdrr b
(mﬁn,vt) continuity pair, {/‘/Ov (2 ’ t| 8 | g nt‘ ) 771‘, }

N0=00:11=21

we again can state, formally, that in the limit as ¢ — 0, from the Schrédinger problem
we pass to the optimal transport problem. It is another piece of evidence of the fact
that the Schrodinger problem is a regularized version of the optimal transport one.
Analogous considerations can be made with the other two forms of the Benamou—Brenier
formula for the Schrédinger problem leading to the same evidence.

It is interesting to note that using the Benamou—Brenier formulas, the comparison
can be made without further calculations, while, instead, using the primal formulations

of the two problems, it was required to expand the entropy functional.






Chapter 6
Semigroup representations

Also in this chapter, we will consider, as an environment, R™ equipped with the

Euclidean distance.

1 Hamilton—Jacobi equation and viscosity solution

The formulation of classical mechanics closest to quantum mechanics is written using
the Hamilton—Jacobi equation, in which the motion of a particle is represented as a

wave. For our purposes, the problem can be defined as follows.

(6.1) Definition Consider g € Lip(R"™). We say that u is a classical solution of the
initial-value problem for the Hamilton—Jacobi equation, namely

2 _ LDyl =0 in R x 0,00,

u=g on R x {0},

if u € CYR" x ]0,400[) N C(R™ x [0,+00]), 2(x,t) — 2|Du|*(z,t) = 0 for every
(x,t) € R" x |0, +00] and u(z,0) = g(z) for every x € R".

Further mechanical information can be found, for example, in [30] or in [60]. From a
mathematical point of view, however, which is what interests us most, the Hamilton—
Jacobi equation appears when we are interested in describing generalizations of the
problems of the Calculus of Variations: see, for example, [33].

We are interested in particular "weak" solutions of the previous initial-value problem,

namely viscosity solutions.

(6.2) Definition Consider g € Lip(R"™). We say that u is a viscosity solution of the
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initial-value problem for the Hamilton—Jacobi equation, namely

9u _1Du|*=0 inR" x]0,+o0],

u=g on R" x {0},

if u(x,0) = g(x) for every x € R™ and for every v € C®°(R™ x |0, +00[) the following
facts hold true:

(1) if (zo,t0) € R™ x |0, 4+00] is a local mazimum point for uw — v, then

ou 1
E(foato) — §|DU|2($0,150) <0,

(1) if (zo,to) € R™ x )0, 400[ is a local minimum point for uw — v, then

ou 1
E(Io,to) — §|Du|2(ac0,t0) Z 0

The construction of this last definition and its consistency can be found in [24].

(6.3) Theorem Consider g € Lip(R"™). There exists at most one viscosity solution of

the initial-value problem for the Hamilton—Jacobi equation, namely

% _LDy2=0 inR" x ]0,+o0],

u=yg on R" x {0} .

Proof. See [24]. =

Further information on the Hamilton—Jacobi equation and viscosity solution can be

found, for example, in [7] or [22].

2 Hopf-Lax semigroup and optimal transport

The aim of this section is to determine a pair of Kantorovich potentials for the
optimal transport problem along geodesics. The first, and most important, ingredient
we need is the Hopf-Lax semigroup.

(6.4) Definition We call Hopf-Lax semigroup the family of operators Q; : Cy(R™) — R,
t € [0, 400], such that for every f € Cp(R™) and x € R"

Qof(x) = f(z)
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and, fort >0,
_ 1
Quf(a) = int {7w)+ 550 — o).
Y 2t
Through the Hopf-Lax semigroup, it is possible to find a representation formula for

the viscosity solution of the initial-value problem for the Hamilton—Jacobi equation.

(6.5) Theorem Consider g € Lip(R"™) bounded. The unique viscosity solution of the

initial-value problem for the Hamilton—Jacobi equation, namely

9 — L|Dul* =0 in R" x]0, 400l
u=g on R" x {0},

is given by

u(z,t) = Qig(x).

Proof. See [24]. =

Other properties of the Hopf-Lax semigroup can be found in the Appendix.
We have seen in Proposition (5.4) that if ug, g1 € Po(R™), with po < L™, and py is
the geodesic connecting o and g, then (g4, v;), with

Id - T;1

R

where T is the unique, up to pg-negligible sets, minimizer for the problem
. 1 2
min §|x —T(z)|*dpo(z) : T : R" — R"™ Borel, Thupo = 11 ¢,

and T3 = (1 — t)Id 4+ tT, is a continuity pair. In particular, p = (73)gpo. Fix, now
t € [0,+o0[ and consider (¢y,1;), Kantorovich potential for pyg, iy, whose existence
follows from Kantorovich-Rubinstein duality. In accordance with Theorem (3.10) and
Theorem (3.11),

Ty(x) = Di(x) = ~D(~(x) + gloP) + 3 DlaP

but ¢ () = =ty () + 3la|* so
T, = 1d — Dy,.

In particular,
Id— Dy, =T, = (1 —t)Id + ¢(Id — D)
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SO
D@t = tD(P,

then a good choice might be ¢;(x) = tp(x) and

(z) = inf {—tgo(x) + ;\x _ y\Q} .

yeR”

We will show, as reported in [1], that this informal reasoning is correct. To do this, we

need, first of all, an elementary inequality.

(6.6) Proposition Let a,b € R and s,t > 0. It holds

a? B (atd)?

S t — s+t

In particular, the equality holds if and only if at = bs.

Proof. By the Cauchy—Schwarz inequality

V(& n), (v,0) ER X R:[(En) - (n,0)]" < (€ +7*)(V* + 0®).

Choose £ = V/s and o = /t to obtain

a _ b —
%an_ﬁ7y_

2 b2

(a+0)* < <a8+t> (s+1)

or in other words

TS
Remembering that the Cauchy—Schwarz inequality holds as an equality if and only if

a@ B (atd)?

the vectors are linearly dependent, we get the second part of the statement. m

We are therefore ready to show that our informal reasoning is indeed correct. Let
us just point out that we already know, from Kantorovich-Rubinstein duality and the
very definition of c—conjugate, that (¢, Q1(—¢)) is a pair of Kantorovich potentials from
1o to 1. The goal of the proof is, indeed, to prove that the representation is true for
every time along the geodesic connecting 1o to p1. Following the idea in [1], we will use
the dynamical representation of the optimal transport problem to be able to apply the

previous elementary inequality.

(6.7) Theorem Let jug, p1; € P2(R"), with py < L™, and (¢, Q1(—p)) be a pair of

Kantorovich potentials from ug to py. Then, given p; the geodesic connecting o and jiq,
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for all t € ]0,1]
(t997t62t(__99))

s a pair of Kantorovich potentials from pg to .

Proof. The case t = 0 is trivial. We then focus on the case t € ]0,1]|. By definition of
the Hopf-Lax semigroup, for every z,y € R”

to(a) +Qi(~t9)(y) < 5l — ol

so (ty, Q1(—ty)) is admissible. By Theorem (4.3), there exists n € OptGeo(ug, pt¢) such
that ¥ = (eg, e:)#n € I'(po, pe) is optimal. We only need to prove that

(6.8) S-ae. (z,y) € R" x R” : tio(z) + Q1 (—t)(y) > ;p; R

First of all, (6.8) is equivalent to

(6.9) n-a.e. v € Geo(R") : to(v(0)) + Q1(—tw)(v(t)) > ;\7(0) — (1)

Now, by the optimality of (¢, Q1(—¢)),

(6.10) n-a.e. v € Geo(R") : to(7(0)) + Qi(—tw)(v(1)) = ;W(U) — (1),

so we only need to prove (6.9) for intermediate points, namely if z = v(0) and y = (1),

we need to prove

(6.11) e, 5 € Geo(R") : p(a) + Qu~p)(2) > fo — =P

for z = ~(t) € R" such that |x — z| = td|x — y| and |z — y| = (1 — t)|]z — y|. Observing
that
. 1 2
Pla) + Qu=¢)(2) = olw) + inf {—plw) + o lw— 2} =

— inf {sf)(l‘) —p(w) + 21t|w - Z|2} 7

weR™

the definition of Hopf-Lax semigroup, combined with (6.9), gives us

pla) +Qu(—)(2) = it {e =y~ Qi(=)(w) — g(w) + o — 2} 2

1 1 1
> gle =yl 4 inf, {—gho — P + gl <7}
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In other words, to prove (6.11) it is sufficient to show

that can be rewritten, using the properties of z, in the form

1 , | 1 1
N nf {_ o2 2}> 2
sa—pe L (sl el gle =2y = sl
that is
| 1 1
12 inf 1Tl — g2t —|w— 2}>_ L
(612 ot { =gl =yP + G =3P} = =

By Proposition (6.6) and the triangle inequality, for every w € R™

ly =z Jw—2* _ |Jw—yl?
2(1—1) 26— 2 7

then (6.12) follows and the proof is complete. =

3 Hopf—Cole semigroup and Schrodinger problem

Replacing the Hopf-Lax semigroup with an analogous semigroup built through
the heat kernel, namely the Hopf—Cole semigroup, it is possible to provide a similar

semigroup representation also for the Schrodinger problem.

(6.13) Definition We call Hopf-Cole semigroup the family of operators Q, : Cy(R™) —
R, t € [0, +00], such that for every f € C,(R"™) and x € R™

Qof(z) = f(z)

and, fort >0,

Qu7(x) = log ( [ y)dc"<y>) |

In other words, a Kantorovich-Rubinstein duality holds also for the Schrodinger
problem. Following the approach reported in [27], we first need to consider the forward
(resp. backward) Hamilton—Jacobi-Bellman equation, namely given ¢ > 0

ou 1

5% §]Du|2 = cAu (resp. - = — *!Du|2 = CAU) )
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for which we need a notion of supersolution.

(6.14) Definition Let T € ]0,+oo[ and ¢ > 0 and a function u : [0,T] x R — R such
that, for every t € [0,T], the function u; : R™ — R such that

w () = u(t, )

is Borel. We say that u is a (strong) supersolution of the forward (resp. backward)

Hamilton-Jacobi-Bellman equation if the following facts hold true:

(i) there exists C' > 0 such that for every t € [0, T

HUtHLoo(Rn) S C,

(ii) for everyt € [0,T] uy € D(Aje) € HY(R™),
(i11) the functions {t — |Duy|} and {t — Au;} belong to L>=(]0,T[, L*(R™)),

(iv) there exists x € R™ and M > 0 such that the function {t — wu;} belongs to
AC([0,T], L*(R™, e~V L)), where V(y) = |z — y|?, and for a.e. t € [0,T]

0 1

0 1
—u — —|Dul* > cAu resp. — —u — —|Dul® > cAu | .
ot 2 2

ot

Further information on the Hamilton—Jacobi-Bellman equation can be found, for
example, in [35] or [36].

As a preliminary result, already interesting by itself, we have the following Theorems,
whose proof relies on the technique used to prove the Benamou—Brenier formula for the

Schrodinger problem.

(6.15) Theorem Let ¢ > 0. The following facts hold true:

(a) if ¢ :]0,1] x R™ — R is a supersolution of the backward Hamilton—Jacobi-Bellman

equation and (v, v;) is a forward Fokker—Planck pair, then

1 /1
/<P1dV1 —/<P0dVo < 2/ /|Ut\2dl/tdt,
0

(b) for any e >0

I'(po,p1)

€ min HR% zeH(/LO|£n)+sup{/g01du1—/<pod,u0(p[0,1] XR”%R,
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supersolution of the backward Hamilton—Jacobi-Belmann equation}.

Proof.

(a) Fix ¢ : [0,1] x R® — R a supersolution of the backward Hamilton—Jacobi-Bellman
equation and (v, v;) a forward Fokker—Planck pair. Consider R > 0 and a cut-off
function ¢ € C*(B(0, R+ 1)) such that 0 < ( <1 and ( =1 on B(0, R). By the very
definition of a supersolution of the backward Hamilton—-Jacobi-Bellman equation, the

function {t — (¢} belongs to
AC([0,1], L*(R™)) N L>=([0, 1], H'(R™))

and the function {¢t — A(Cp;)} belongs to L>([0, 1], L*(R™)). In particular, by Lemma
(5.23), applied to (v, v;) and to the function {t — (¢}, for a.e. t € [0, 1]

js( / g%dys)yszt — / ¢ (js903> il + - / Csotdvs o=t

For the first term in the right-hand side, using again the fact that ¢ is a supersolution

of the backward Hamilton—Jacobi-Bellman equation,

d(/CSOsts)’sﬁ < - /C <;‘D90t’2 + CASOt) duy

and as regards the second, using the fact that (v, v;) is a forward Fokker—Planck pair

and (p; € D(A) C HY(R"), arguing by density and using Young’s inequality, we can

write
d
/C <d8905> ‘sztdyt = / (CD(Pt c V¢ + QOtD< . Ut) d]/t_'_
c/ (CAp; +2DC - Doy + 0 AQ) diy <
1 1
< / (¢ (51Dl + Slul?) + @uDC - v0) dvet

C/ (CAp; +2D( - Dy + 9, AQ) duy.

Resuming,

d 1
(/stdys)|s:t < 2/C|vt|2dyt—l—/gotD(mtdumLc/(QDC~Dgot—|—g0tA§) dv,.
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Integrating both sides in ¢ over [0, 1], we get

1 1
/g(pldVl —/C()Oodl/o S 2/ /C"Ut’Qthdt—F
0

1 1
+ / /\SOtDé . Uthtdt + C/ / (QDC . D(pt + QOtAC) dl/tdt.
0 0

Passing through the limit as R — 400, in the same way as in the proof of the first form

of the Benamou-Brenier formula for the Schrodinger problem, the inequality follows.

(b) Let us start proving the inequality

£ min HR% >eH(uo | L) —|—sup{/g01du1 —/gpoduo cp:[0,1] x R" - R,

(po,u1)

supersolution of the backward Hamilton—Jacobi-Belmann equation}.

By the second form of the Benamou—Brenier formula for the Schrodinger problem,
e min Hg, =eH(uo | L")+
2

I'(po,p1)

1 . ! 2 al/t . IS
+ = min lvg|*dvydt - ——— + div(vy) = =Avy, Vg = po, V1 = i ¢
2 0 ot 2
so, by (a),

T(po,01)

€ min HR% > eH(uo | E")+/gpldyl —/gpodl/o,

and passing to the supremum the inequality follows.

As concerns the < inequality, given §, s > 0, consider

pr"(x) = elog ( / 9 (W)razn: (2, y)dL"(y) + 5) -

By Lemma (5.29), ¢ is a supersolution to the backward Hamilton—Jacobi-Bellman

equation on [0, 1], so
/g@i’sd,ul — /gpg’sduo < sup {/gpldul — /cpoduo cp:]0,1] x R — R, supersolution
of the backward Hamilton—-Jacobi-Belmann equation}.

Now, we want to pass to the limit as s — 0": using the continuity of the function
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{s — gpf’s} with respect to the L2(R", e~V L") norm, where V(y) = M|z — y|?, and

the compactness of the support of ug, p1, we get

i [ oo = [ vid im [ b = [ 0.

s—0F 5—0

Arguing now in the same way as in the proof of the first form of the Benamou-Brenier

formula for the Schrodinger problem, passing through the limit as 6 — 07 we get

/wfd,ul — /wgd,uo < sup {/gpld,ul — /gpod,uo :p:[0,1] x R"™ — R, supersolution

of the backward Hamilton—Jacobi-Belmann equation}.

Combining the previous inequality, the identity ¢§ = —¢g + €log 0o and the explicit

representation formula of the minimizer of Hg., the desired inequality follows. m
2

(6.16) Theorem Let ¢ > 0. The following facts hold true:

(a) if ¢ :[0,1] x R" = R is a supersolution of the forward Hamilton—Jacobi—-Bellman

equation and (v, v;) is a backward Fokker—Planck pair, then

1
/SOOdVO_/Soldl/l < 2/ /'Ut|2dytdt7
0

(b) for anye >0

(p0,01)

£ min HR% =eH(u | L™) +sup{/g00du0 —/(pldul cp:[0,1] x R" - R,

supersolution of the forward Hamilton—Jacobi-Belmann equation}.

Proof. 1t is a matter of reversing time and then using the same strategy as in the

previous Theorem. m

The following are the main results of the section. Using the Hopf—Cole semigroup,
as said at the beginning of the section, we can provide a dual variational formula for the
Schrodinger problem. As regards the first results, following what is reported in [27], the
< inequality follows directly from the explicit representation formula for the minimizer

of the entropy. The converse inequality, instead, is a consequence of Theorem (6.15).
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(6.17) Theorem For anye >0,

¢ min Hgi. —5H(M0|£”)+sup{/udu1 / < duo :u: R — R,

C(po,p1) 2

et € L*(R") N L™(R") }

Proof. Observing that e# € L*(R™) N L>=(R") and ¢f = 5Q (?‘6)) the inequality

e min Hg, <cH(po | L )—i—sup{/ud,ul—/aQ; (Z)d,uozu:]R—ﬂR,

T'(po,k1)

es € L*(R") N L“(R")}

comes directly from the explicit representation formula for the minimizer of Hg. and
the identity ¢f + 15 = €log 0o. i

As regards the converse inequality, consider d,s > 0 and define for every ¢ € [0, 1]
and every u : R” — R such that e € L?(R") N L>®(R")

[y (g) (x) =log (/eu(ey) reey (2, y)dL" (y) + 5) .

2

By Lemma (5.29), the function {(t, T) —> @fsu(z)} is a supersolution of the backward
Hamilton—Jacobi—Bellman equation, so, by Theorem (6.15),

£ min HRs >eH(ug | L7) + /SQS’S (:) duy — /6Q%S <Z) dyo.

I'(po,p1)

Passing through the limit as s — 07 and 0 — 07, as in the proof of the first form of the

Benamou—Brenier formula for the Schréodinger problem, we get

£ min HRE > eH(po | L) + /Ud'ul - /€Q§ (Z) Ao

I'(po,p1)

and the conclusion comes passing to the supremum on u. m

(6.18) Theorem For any e > 0,

£ min HRs :EH(ul|£")+sup{/uduo—/562§ (g)dulzu:R—)R,

T'(po,11)

e € LAR™) N LOO(R")}.
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Proof. 1t is similar to the proof of the previous Theorem. =

4 Comparison

Following what is reported in [44], we understand that the connection between the
optimal transport problem and the Schrodinger problem can also be read using the
Hopf-Lax semigroup and the Hopf—Cole semigroup. In other words, we can close the
circle open in Chapter 2 by establishing that the dual Schrodinger problem representation
via Hopf—Cole converges to the dual representation of the optimal transport problem
induced by the Kantorovich—Rubinstein duality.

By exploiting the connection between the optimal transport problem and the
Schrodinger problem, we can also establish duality relations among the differential
equations that allow their representation. First of all, being able to represent, by
the Benamou—Brenier formula, the optimal transport problem using the continuity
equation, we have understood that we can operate dually, representing the problem
using a differential equation, but replacing the previous one with the Hamilton—Jacobi
equation. Analogously, the same duality can also be established between the backward
(resp. forward) Fokker—Planck equation and the forward (resp. backward) Hamilton—

Jacobi-Bellman equation.



Further developments

On the Benamou-Brenier formula for the Schrodinger

problem

The assumptions contained in the Benamou-Brenier formula for the Schrodinger
problem do not all appear equally necessary. The boundedness of densities, required
to have finite entropy and to apply the regularization property of the heat kernel, is
important for the uniqueness of the solution and the regularity of the interpolating
potentials. On the other hand, the boundedness of the supports is required to have a

compact support property, so a question arises, namely
Is it possible to remove this last assumption?

The issue is not only theoretical: at the moment, indeed, the Benamou-Brenier formula
for the Schrodinger problem is not applicable to the case ug, 1 Gaussian. This is also
important in the application since, as we have already seen in Chapter 4, this is a class
of measure for which we can do explicit computations. The first next goal is then to try
to relax the hypotheses for the Benamou-Brenier formula for the Schrodinger problem
starting from the question posed. The hope of a positive result comes from the works of
Marcel Nutz and collaborators, for example [49], in which they study the Schrodinger

problem without any compactness assumption.

Functional inequalities

It is possible to apply the Schrodinger problem theory to the study of functional
inequalities. Some results have been obtained regarding the recovery of already known
functional inequalities or, at least in positive curvature, the improvement of them. As an
example, we can cite [17]: starting from the convexity inequality of the entropy written

along an entropic interpolation and deriving, the Author has managed to generalize the
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Talagrand inequality, namely
W3 (v,y) < 2H(vly),

where v € P(M), with M an appropriate manifold, and v is a standard Gaussian
measure, to the entropic case. He actually obtained a stochastic version of the Talagrand
inequality. This is useful because, for example, in a manifold with Ricci curvature
strictly positive, the stochastic Talagrand inequality is stronger than the classical one. A
possible way forward is then to apply these ideas to other notable functional inequalities,
such as the log-Sobolev inequality or the concentration inequality. Concerning this topic,
it is important to understand, also, if it is possible to obtain a dimensional improvement

for those functional inequalities that are dimension-free.

Unbalanced optimal transport

As we have specified in Chapter 1, we have focused on transport between measures
with the same mass. A possible generalization is then the unbalanced case, also called
unbalanced optimal transport. In particular, in [42], the Hellinger—Kantorovich distance
has been introduced as a generalization of the Wasserstein distance. Although, in [16],
this latter has been generalized to the case p # 2, the theory, in its entirety, is not
actually developed like its balanced counterpart. The importance of deepening this
side of transport theory would open up a deeper understanding of unbalanced optimal
transport. Once the problem is sufficiently understood, it would be interesting to study
its entropic regularization: a static version (see [11]) and a dynamic version (see [6]) are

known, but in-depth studies regarding their connection are still lacking.

Multi-marginal and grand canonical problems

If in unbalanced optimal transport we move from marginals with the same mass
to unbalanced marginals, another possible way forward is to move beyond the idea of
having only two marginals. This idea leads to the so-called multi-marginal optimal
transport problem, ubiquitous in different disciplines such as economics (see, for example,
[13]), statistics (see, for example, [12]), image processing (see, for example, [57]) and
quantum physics and chemistry, in the framework of density functional theory (see, for

example, [10] or [18]). A precise definition of the problem can be given as follows.

(6.19) Definition Consider py, ..., € P(R™) and a Borel function ¢ : R™ — [0, +00].
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In the so-called multi-marginal optimal transport problem we look for

inf{/cdﬂ:WEF(ul,..-,M)},

where T(p, ..., pe) = {7T € P(R™): (p')pm = pii=1,... ,é}.

Of particular interest is the application to quantum chemistry: the problem models

the electron-electron repulsion, when the cost function is the Coulomb potential, namely
co(z1,...,m) =)

and the marginals are all the electron density p. In this case, the problem leads to

considering the Lieb functional, namely
Frlpl = inf {tr(H,') : T' € S(H) self-adjoint, pr = p},

where, G(H) is the space of bounded operators, on a well-chosen Hilbert space H, with
1
finite trace and Hy = —A +» ———

—~ |z; — x;

From the multi-marginal é;ge|, anothje|r direction for a generalization is then to remove
also the idea that the number of marginals must be deterministic. In this case we obtain
the so-called grand canonical optimal transport problem.

A first direction of study is to generalize the convergence rates of the entropic cost
established in [48] by substituting the signature conditions introduced in [55] with a
less restrictive assumption on the cost function, and by pushing Minty’s trick further to
obtain quadratic detachments as done in [14] and [48]. A second direction, which would
represent a major improvement also for the classical two marginals case, is to tackle
the question of the convergence of entropic plans in the entropic regularization of the
problem to the case in which there are several, possibly non-deterministic, unregularized

optimal plans.






Appendix A

Some properties of the Hopf—Lax

semigroup

In this Appendix we just want to collect the main properties of the Hopf-Lax
semigroup. The proof is an expansion of the ideas reported in [1]. We only consider, as
in Chapter 6, the Euclidean case. Further information, also in a more general setting,

can be found, for example, in [1], [2] or [20].

(1.1) Theorem Consider f € Cy(R™) and the function {(t,x) —> Q:f(x)}. The
following facts hold true:

(a) for everyt € [0, +o0]
inff < Qtf < f < Sllpf,

(b) if t — 0, then Q.f(x) / f(x) for every x € R™. In particular, if f is uniformly

continuous, then Q.f — f uniformly on R,
(¢) for everye >0, {(t,z) — Q+f(x)} is Lipschitz on [e, +oo] x R",

(d) fora.e. x € R™ and a.e. t € ]0,+00[ one has

d 1 )

—Quf () + S|D(Quf) (2)” =0,

dt 2
(e) if [ is also Lipschitz, then {(t,x) — Q:f(x)} is Lipschitz on [0, +oo[ x R",
(f) for every (t,z) € [0, 400 x R™ it holds

@) + LD @upP@) <0
dt t 2 t = Y,
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where

+ _
1) = sy 8121~ QI

is the upper Dini derivative of Q.f and

* T Quf(2) — Quf(y)]
D™ (Quf)l(x) = ;grg)y’%g p Iz

is the asymptotic Lipschitz constant of @, f.

(9) {Qt}=q is a semigroup.

Proof.
(a) It follows directly from the definition of Hopf-Lax semigroup and the properties of
infimum and supremum.

(b) Clearly, for every x € R™, if 0 < t; < o, then Q, f(z) < Q¢ f(z) and, from (a),

sup Quf (x) < f(x).

t>0

Let us prove the converse inequality, namely sup @, f(z) > f(z). For every x € R™ and
>0

t >0, given R, = \/Qt(supf —inf f), consider B(z, R;). We have

it {7y)+ e —yP} < f0) <sup f

yEB(x,Rt)
and
. 1 2 . . 1 2
it {f@)+ plo-yP} = mf fo b eyl
ye€R"\B(z, Ry) 2t R™\B(z,Ry) yeRM\B(z,Ry) 2t
R}
> inf -t =
>inf f 4+ o1 sup f,
SO

wt e+ gle—oPz it {re)+gle— sl

yER™\B(z, Ry) yeB(z,Ry)

Observing that

Qo) =min{ it g+ glo-oP}. e {0+ gle- v},

yE€B(z,Rt) yER™\B(z,Ry¢)
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we get

Q@)= it { 1)+ oo P}

yeB((E,Rz)

At this point, using the positivity of distance,

Qf@) = it {fw)+ple—yP}z it fo),

yEB(qut) yEB($7Rt)

SO
sup Quf(¢) = sup  inf __ f(y).

>0 t>0 yeB(z,Re)

Now, if 0 < t; < tq,
inf  f(y) < _inf  f(y)

yEB(I,Rtg) yEB(x,Rtl)

and taken for every t > 0, z; € B(z, R;) such that

f(xt) S lnf f_'_ta
B(z,Rt)

by the fact that for ¢ — 0, R, — 0 so z; — x, then, using the fact that f € Cy(R"),
f(z) = f(z) so
sup inf f > f(x).

t>0 B(xz,Ry)

By the fact that the converse inequality is obvious,

sup _inf f = f(z).

t>0 B(z,Ry)

In particular,

sup Quf (2) = f(2).

>0

Consider now f also uniformly continuous. Fixed € > 0, there exists ¢ > 0 such that

3

Vay €R": e -yl <6 = |f(@) - f)l < 5 = fy) > fla) -

Consider £ > 0 such that Ry < 0. For every t <t we have R; < Ry < 0 and

3

Va,y e R": |z —y| < R = f(y) > f(w) 5

In particular, for every x € R"

f@)+ 5> f(2) > Qif(@) > inf_f(y) > f(2) - -

2 yeB(@,Ry) 2
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or in other words
€
@uf(@) - S < 5 <
so Qif — f uniformly on R"™.

(c) Take t1,ty € [e, +o0[ and x1, 22 € R"™. Recalling what we proved in (b),

Quie) = it {f)+ 5rlen - o)

yEB(x1,Rt;)

and, from the definition of Hopf-Lax semigroup,

Quites) = int {7t)+ 5o —oPf < it {r)+ rle - o),

yEB(z1,Re;)

so, observing that

inf f = inf {g+ (f — g)} > inf g +inf {f — g},

then
inf f —infg > inf{f — g},
from
. 1 2
Quf(er) = Quf(ee) = _int L)+ ofor —yP f+
yEB(w1, Ry, ) t1
. 1
-t @)+ 5l =yl
yEB(ml,Rtl) 2t2
we have

Quite) = Qufle) > it {f(y)+ 5rler —yP = £0) — 5-loa — v} =

yEB(x1,Rt;) 2tl

1 1
= inf {:v— 2 ay — 2}.
yeB(z1,Rey) 2251| 1=l 2t2| 2=l

Resuming,

(12)  Quftn) - Qufte) > it L fm P~ e -y}

yeB (a1, Rr,) 2t 2ty

Now, if we write (1.2) with z; = 25 = =,

Quf@) = Quf) = it {(5- 21) o~}

yeB(z,Rey) \\201




SO
1 1
xr)— r) > inf { — — —||r — 2},
Qtlf( ) Qtzf( ) - B, R 2t1 th | y|
then
1 1
— — —| _inf —|z —y]*l =
Quf () = Qul(@) 2 g — 50| nf_{~lw—l’)
1 1
= YRS sup |I - y|27
2t1 2t yeB(a, )
therefore
1
_ B 2t tf)=
Q@) = Quile) = =[5 = 5 |Be = =[5 5-fetsup £ — int )
1
=z 5 ti(sup f — inf f).
Analogously,

@J@—@sz—u—éh©mﬁ4ﬂﬂ

or, in other words,

Quf (@) — Quf(x) < ]wwwfiﬁn

131
“
|-l £~ int 1) < Qurte) - Qufe) < |~ Jtaloup £~ i £),
then
Q@) = Quf@)| < | — | max (b, t2) (sup £~ int ) =
- Szlfi’f{;i}fnl —ty| < Squ;inffm —ty].

Writing instead (1.2) with ¢; =ty = t, using the triangle inequality,

) 1
Qif(x1) — Qif(x2) > _inf {2 (|931 y|* — |vs — 912)} =
yeB(a1,Ry) (2t
1 .
= _nf  {(Jz1 —y[ = |22 —y]) (Jz1 — y[ + [22 — y[)}
2tyeB(am,Rt)

1 .
> — inf {—|I1 - $2| (2|$1 - y| + |x1 - x2’)} 2
tyGB(m,Rt)

159
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1
> — sup {2’951 —yllzr — zo| + |21 — 332|2}

B 2ty€B(w1,Rt)
SO
R 1
Quf (1) — Quf(xg) > —7t|2171 — 9| — %‘xl —1p]? =
\/2(sup f — inf f) 1 ;
= — \/% |$1—$2|—?t|$1_12 .
Analogously,
2(sup f — inf f) 1
Qif(xa) — Quf(x1) > —\/ NG |z — xa| — §|$1 — )%
or, in other words,
2sup [ — inf f) .
Quf(x1) — Quf(z2) < \/ NG |z — xa| + ﬂ’xl — z9?,

SO

2 — inf
Qi f(21) — Quf ()| < \/ (Supjg et |71 — o] + 21511’1 — 3> <

\/2(supf — inf f)
ST

Now, for every £ € R™ we have

|Qtf($1) - Qtf($2)| _

1 2
|21 — x| + E|$1 — Zo|”.

sup
T1,r2ER™ |ZL’1 - I'2|
T FT
— max sup |Qtf($1) - Qtf($2)|7 sup |Qtf($1) - Qtf($2)| ,
z1,22€B(§,Re) ’1’1 o .T2| z1,22€R™M\B(&,Re) |J51 - IQ’
z1FT2 AT
SO
Quf (1) — Quf (o) 22(up f —inf f) /3| Quf ||
sup < max , <
@1,22ER" |1 — 22 Ve \/5(supf — inf f)

T F#TY

< {2\/2(Supf ~ inff)) V2l } .
Ve \/g(supf —inf f)
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Finally,

‘Qtlf(xl) - Qtzf($2)| < |Qt1f(x1) - Qt2f($1>| + |Qt2f( ) Qt2 S

s ] {2\/2(Supf —inf f) f||f\|oo }
€ Ve \/5(supf inf f)
then, set
AT DY AL Y T CU kL) R )
: € Ve ’ \/s(supf — inf f) ’
we obtain

(Qu f(21) = Qu, f(w2)] < Colf) (Jta — ta] + a1 — wa]) < V2C(F)/ (81 — 12)2 + (11 — 12)2,
therefore @, f is Lipschitz on [g, +00] X R™.

(d) Using (c¢) and Rademacher’s Theorem (see, for example, [24]), for a.e. z € R", for
a.e. t € ]0,4o00[, the function {y — Q. f(y)} is differentiable at z. Let us also observe
that R" is a reflexive Banach space and the function {y — f(y) + 2%|96 — y|2} is proper
and weakly lower semicontinuous, being continuous and bounded. Furthermore, it is
also coercive: indeed, using the triangle inequality of the norm,

PO+ o le =2 gy~ D]+ f £+ Jol) > Al + B,

-2t

for some A > 0, B € R. In particular, the direct method of the Calculus of Variations
gives us the existence of a minimizer J;(z). By [1, Lecture 14, Section 3], we know that
for every x € R™, for a.e. t € ]0, +00[

2 = Ju(z)”

d
G @) ==

Let us prove that for every differentiability point x of the function {y — Q,f(y)}

it holds
x — Jy(x)

D(Q:f)(z) = ;

Let us start observing that

~Quf @)+ gl = =k {7(w)+ gl =y} + Sl =
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1 2 1 2
= sup { Fy) = 55lv = vl }+2t!$\ =
{1w) = b= ol + o Jel?)
= sup ¢ — - —|z— —lx|* =
yen U T gt I Ty

= sup {1?; ‘T — (f(y) + 21t|y|2)}

s0, being the supremum of a family of affine functions, {x — —Qif(7) + $|x|2} is a

convex function. In other words, —Q);f is —%—convex. By the fact that

Qif(y) — Quf(x) <

~

() + ol = A = () + 5l = A =

— 21t ((y —Ji(x)) - (y — Je(x)) + |z — Jt($)|2) _

- ;t[((y D)+ (= (@) - ((y— @) + (- Ji(2) +
+ | — Jt(x)ﬂ =

— 21t (Iy — 2] +2(z = Ji(2)) - (y — a:)) -

_ o= Jla)

1 2
; -(y—x)+27|y—afl,

we have that

x — Ji(x)

Quf )~ (Quf @) 2~ Ty ) Ly

S0
_z— Ji(x)

t
Being @), f differentiable at x, we obtain

< 0_% (—Qif) ().

D(-Quf)a) = - I
then, by linearity,
DQuf)(w) = T D,
In particular, )
d —J, 1
G = T @,

so the result follows.

(e) First of all, for every z € R" and ¢t > 0, given R; = 2tLip(f), consider B(z, R;). We
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have

inf {f(y) + 21t|a: - yIQ} < f(z)

yEB(z,Ry)

and, by the fact that f is Lipschitz, for every y € R™ \ B(x, R;) we have

F)+ ggle —yl = F) + ke~ ylle — 91 >
> fly) + 21th|:(; —yl = f(y) + Lip(f)|z —y| =

> fly) + f(x) = fly) = f(x)

SO

i {1+ gle— o} 2 0@zt {re)+ e o)

yER™\B(z,R¢) yE€B(z,Ry)

Observing that

Qi) =min it {sw+ gle=olh e {r)+ gl o},

yeB(z, Ry) 2t yeR™M\B(z,Ry)
we get
. 1 2
(13 Quf@) = it {f)+ 5 le—yP}.
yeB(z,Re) 2t

Consider t1,ts € [0, +00[ and xq, 29 € R™. If t1,15 > 0, in a similar way to what we have

done in (c), we can prove that

(14 Quf)-Quftz it {olor—yP = 5les — P},

yeB(a1,Rey) \ 201 2ty

Writing (1.4) with ¢; =t = ¢ and using the triangle inequality,

) 1
Qufe) = Quf @) = it {5 (jo =y — e = o) | =
yeB(xl,Rt) Qt
L.
= 5 {(Jy =yl = fe2 = yl) (s =yl + |2 — )}
2t y€B(z1,Rt)

1
> — inf  {—|xy — 22| 2z —y| + |21 —x2|)} >
2L yeB(a1,Re)
1
>~ sup {2ler—yllar — @ + o1 — maf?)

y€B(z1,Rt)
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SO

Quf (1) = Quf(e2) = — oy — o] = ol — ol =

. 1
= —2Llp(f)|l'1 — 513'2’ — %‘ﬂfl — .%'2’2.

Analogously,

Quf(22) = Quf 1) 2 —2Lip()|or = 22| = ol —

or, in other words,

Quf (1) = Quf(e2) < 2Lip(f)ls — ol + oy — ol

SO
Quf (1) = Quf ()] < 2Lip(1)fe — 2] + 5 [y —

In particular, if |z — xo| <,

Quf (1) — Quf (w2)] < <2Lip(f) + ;) 121 — o],

Conversely, if we are in the case |x; — z5| > ¢, consider (yp) in R™ such that

1

Qi f(x1) > flyn) + 21t|$1 — yh|2 — il

Using the Lipschitzianity of f, f(yn) — f(z1) > —Lip(f)|z1 — yal, so

1

Quf(x1) = f(x1) = Lip(f)[z1 — yn| + 21t|$1 —ynl” — h+1

Expanding the trivial inequality % (Lip(f) — |x1 — yh\)2 > 0, we obtain

1 Lip®(f)t
—L|z1 —yn| + %Wl —unl? + p2(f) > 0,
N ()
Lip*“(f)t 1
Qif(x1) > flo1) — 5 hti
and passing to the limit as h — 400
Lip*(f)t

Quf(z1) > f(x1) — 5
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then, by the fact that Q;f(x2) < f(z2),

-2 . 2
Quf(@1) = Quf (w2) = fla1) = Llpz(f)t — flwa) = —Lip(f)lar — s - Llpz(f)t.
Analogously, B
Qtf(l?) — Qtf(x1> > _L1p<f)‘l'1 . 952! _ L1p2(f>t
or, in other words,
.2
Quf(@) — Quf(a2) < Lip(f)fa — o] + 2
SO
L2
|Quf (1) = Quf (w2)] < Lip(f)|z1 — 22| + Llpg(f)t = ;Lip(f) (14 Lip(f)) [z = 25.

Resuming,

(15)  1Quf(er) = @uf(@a)] < max { SLip(f) (1 +Lip(1))  2Lip(f) + 5 } o1 2],

so, fixed ¢t > 0, the function {x — Q;f(x)} is Lipschitz. Now, if t; < t9, by (¢), the
function @, f is Lipschitz on [t1, +0o[ X R™ so, in particular, on [¢1,t5] X R™. Therefore,

for every x € R"

Qu () — Quf(x)] < / 2 Ci@t@;) it

By (d), there exists () in R” such that x;, — = and for a.e. t > 0 and every h € N

d 1
%Qtf(xh) + §|D (Quf) (zn)]2 =0,

SO

|Qt1f<xh) - thf(xhﬂ S ;/t 2|D (Qtf> (l’h)|2dt

and using (1.5),

QS () = Qufen)] < 5 (e {SLin() (1 + Lin()  2Lip() + 3 }) 13 = ta].

Using again the fact that {z — Q. f(x)} is Lipschitz, we can pass to the limit and
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obtain

(16) 1Qu F(x) ~ Quf )] < & (maox {Srin(r) (14 in(r) 21in(r) + 11 ) i — bl

The case ty < t; is analogous. Using now the triangle inequality, (1.5) and (1.6), we

obtain
(Quf (1) = Quuf(w2)] < 1Qu F(a1) = Quaf (1) +1Quaf (1) — Qi f2)] <
V2 max {;Lip(f) (1+ Lip(f)),2Lip(f) + ;}
(1 + max {;Lipm (1 + Lip(f)) , 2Lip(f) + ;})

\/|951 — xa]? + |t1 — ta)?,

so {(t,x) — Q.f(x)} is Lipschitz on |0, +o00[ x R™. Furthermore, there exists a unique
Lipschitz extension to |0, +o0o[ x R™ and, by (b) it coincides with Qo f(z) so the global
Lipschitzianity follows.

(f) Suppose, initially, that f € Lip,(R"). For every (¢,x) € ]0,4o00[ x R", consider
z; € R™ such that |
Qif(x) = flze) + 2*t|$ -z

and such that for any other minimizer £ of Q,;f(x),
|z — §|2 <z — 2.

For every ¢t,h > 0

Qunf (@) = Quf(w) < flo) + gl =l = (£ + gl =) <
h 2
= —mu’ — x|,

SO
Qupnf(x) — Quf () < |z — $t|2
h — 2t(t+h)

and for h — 0t
d+
a@tf(l") < -

In particular, by [2, Proposition 3.2], we get that the function {(¢,z) — |z — 24|} is
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upper semicontinuous. Then, considering ¥, such that

Quf () = 1) + oy — wl,

we have
_ 1 _ 2 _ _ 2
lim sup Qtf(z) Qtf(y) S lim sup - |Z ytl |y ?Jt| o
"0y, 2€B(w,r) ly — 2| r=0, eB(z,r) 20 ly — |
Clim sup LUEm sy uD (2wl 4y — wl)
r=0y eB(z,r) 2 ly — 2|
SO
z) — 1
i sup 2O IO iy gy Loyl <
r=0 y,2€B(z,r) |y - ’Z| r—0 y,2€B(z,r) 2t
<li L (s =yl + 2y —wil) <
11m Ssu — I\ |2 — —_
S y’ZEBEw) / Y Y= Ytl) =
1
< i —(2r 42y —y,]) <
<l sup Sir+2y—wl) <
<1y | | < v — @]
— 111m su — _—.
=7 yEB(E’T) Y—=Yt| = ;
Resuming,
* |fE - xtl
|ID*(Qf)|(x) < ;

and, in particular,

0.

|z — 2|2 N |z — 2|2 _

(@) + 210" (Qu) P () <
ar <\ Ty I = =00 22

The general case is similar up to change minimizers with minimizing sequences.

(g) If at least one between s, t is equal to 0, it is trivial. We then consider only the case

s,t > 0. Let us start proving that for every s,¢ > 0,

Qs+tf S (Qs o Qt)f

For every x,y,z € R", by Proposition (6.6) and the triangle inequality,

1

f(y)er

1 1
_ 2 < _ 2 _ 2.
[z —yl” < fly) 2t|?/ z| 23|x 2|
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Passing to the infimum, with respect to y, both sides we obtain

. 1 1
Qund @) < inf {F) + 5rly = 2 + o _lo — 2P} <
1 1
< inf - . 2} 7 2
< inf {£)+ 5yly— =P} + 5 fo

and if now we also pass to the infimum, with respect to z, we get

Qua (@) < int Lt {70+ 55l — 2P} + oolo = 2P} = Q0 QS

ZER" yeRn

Now, let us prove that for every s,t > 0 and for every x, z € R", it holds

| 2

it {o-fo =P+ oly— 2P} < 5]
m — | — - —Z r—z
gern 250 Y0 Tl =2t + )

On the segment connecting = and z, consider 7 such that

_ t _
lz -7 =~z -7l
S

<

X

Figure A.1: A point 7 on the segment connecting = and z.

In particular, Proposition (6.6) holds an equality, then

o =gl  Jz=gl _(e=gl+le=g)* _|e—=2P

2s 2t 2(t + s) 2t +s)

Passing to the infimum, with respect to y € R™, both sides we obtain

1 1 |z — 2|2
inf { —ylP 4+ =y — 2} < .
yekn 25|x yIh+ 2t|y Ay = 2(t + s)
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Consider now (y5,) in R™ such that

L e e o R R
—l|r — —lyn — 2 inf < —Jz— —ly—=z —
25" I gl yere 125" Y0 T Y h+1 -
< o= 2P+
| — Z —_—.
= 2(t+s) h+1

Adding up both sides f(z) and passing to the infimum, with respect to z, we get

. 1 1 1
inf {7+ gl — 2+ cle =l < Qe @) +

S0, passing to the infimum, with respect to y, we arrive at

1

(QS o Qt)f(-T) S Qertf(m) -+ m

Letting h — +o0,
(Qs 0 Qi) [(2) < Qsyef(2),
then
Qsitf = (Qs 0 Qi) f

and the proof is concluded. m
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