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There are more things
in heaven and earth, Horatio,

Than are dreamt of
in our philosophy.

William Shakespeare,
Hamlet | Act 1, Scene 5





Abstract

This document, written by Mattia Garatti under the supervision of Dr. Luca Tamanini
and the co-supervision of Dr. Nicolò De Ponti, constitutes the final exam paper for
the master’s degree course in Mathematics offered by Facoltà di Scienze Matematiche,
Fisiche e Naturali of Università Cattolica del Sacro Cuore.

Both optimal transport and the Schrödinger problem are interpolation problems:
in the former, one is interested in seeking the optimal deterministic way to send an
initial distribution onto a final target, where optimality depends on a given cost to be
minimized; in the latter, one aims at finding the most likely evolution for systems of
diffusive particles between two different observations.

At first sight, the two problems seem thus quite different, but a more careful insight
suggests a strong connection between the two: indeed, the Schrödinger problem can be
interpreted as a noised, or regularized, version of the optimal transport problem.

The aim of this thesis is to study some variational representations of these two
problems, thus highlighting, at least formally, how optimal transport can be recovered
as Γ-limit of the Schrödinger problem. The topics discussed lie at the interface between
Mathematical Analysis, Probability Theory and Geometry of the Wasserstein space,
thus representing a cutting-edge subject.
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Notations

For sake of clarity, we collect here some standard notations. We emphasize that we
adopt the French conventions on ordering.

Basics

χE characteristic function of E ⊆ X

ιE = 1−χE

|χE | indicator function of E ⊆ X

log x natural logarithm of x > 0

N set of natural numbers (so 0 included)

R extended real line

pi canonical projection on the i-th factor

pX canonical projection on X

Functional analysis

⊥E left orthogonal of E

Lip(f) Lipschitz constant of f ∈ Lip(X)

Lip(X) space of Lipschitz functions over X

C(X;Y ) space of continuous functions from X to Y

Cb(X;Y ) space of bounded continuous functions from X to Y

C∞
c (X;Y ) space of compactly supported smooth functions from X to Y

D(∆) ⊆ H1(U) space of (∼Ln-equivalence class of) functions of H1(U) such that
∆u ∈ L2(U)
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10 NOTATIONS

D(∆loc) ⊆ H1(U) space of (∼Ln-equivalence class of) functions of H1(U) such that
∆u ∈ L2

loc(U)

E⊥ right orthogonal of E or (Hilbert) orthogonal of E

H1(U) Sobolev space W 1,2(U)

L0(X,µ;Y ) space of (∼µ-equivalence class of) Borel functions from X to Y

Lp(X,µ;Y ) space of (∼µ-equivalence class of) functions fromX to Y p-summable
with respect to µ

xn ↗ x increasing convergence of xn to x

xn ↘ x decreasing convergence of xn to x

xn → x convergence of xn to x

Measure theory

δx Dirac delta measure centered in x

dν
dµ

Radon–Nikodym derivative of ν with respect to µ

M(X) set of Borel finite signed measures over X

M+(X) set of Borel finite positive measures over X

P(X) set of Borel finite positive normalized measures over X

R(X) set of Radon measures over X, i.e. Borel measures inner regular
and locally finite

R+(X) set of positive Radon measures over X

B(X) Borel σ-algebra over X

ν = ϱµ ν ≪ µ and dν
dµ

= ϱ

ν ≪ µ ν is absolutely continuous with respect to µ

∼µ equivalence relation induced by the measure µ



Introduction

Let us put ourselves in the following situation: we have a certain quantity of mass
distributed in a certain way. We are interested in moving it to a new configuration.

Figure 1: An intuitive representation of the optimal transport problem.

This requires a certain cost, so a question naturally arises, namely

What is the best way to transport the mass from the initial configuration
to the final one in order to minimize the cost of the transport?

The first to tackle this problem, in a mathematically rigorous way, was Gaspar Monge
and today it is known as the optimal transport problem. The problem has been then
reformulated by Leonid Kantorovich.

Let us now shift our attention to a different situation: a system of material points
that move with Brownian motion.

Figure 2: Pollen in the air moving of Brownian motion (Unsplash, CC0 Public Domain).
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12 INTRODUCTION

Suppose we know the initial and the final configurations of the system in a certain time
interval. What we might ask ourselves is

What is the most likely evolution of the system?

The previous question has been proposed, for the first time, by Erwin Schrödinger and
leads to the second variational problem of our interest, the Schrödinger problem.

At first sight, the only similarity between the two problems is the fact that both are
interpolation problems. We will see that a deeper connection can be established.

In the first three chapters, we focus on the abstract, compared with the sequel,
theory regarding the two problems by presenting their fundamental characteristics and
the first connections between them.
In Chapter 1 we present the primal formulations of the two problems: with regard
to optimal transport, we start from the historical definition given by Monge and then
move on to the less problematic definition provided by Kantorovich for which, under
appropriate hypotheses, we show the existence of solutions through the direct method
of the Calculus of Variations; in a similar way, we proceed for the Schrödinger problem
in order to be able to make a first comparison.
In Chapter 2 we analyze two dual formulations of the problems induced by convexity: in
particular, as regards the optimal transport problem, we present Kantorovich–Rubinstein
duality; as for instead the Schrödinger problem, we analyze the representation induced
by the variational formulation of the entropy functional.
With Chapter 3 we close the first abstract part of the thesis presenting the initial
properties of the Wasserstein space (P2(X),W2) and some of its geometrical aspects.

In the last three chapters, the setting becomes more tangible: in fact, we place
ourselves in the Euclidean environment in order to study the most interesting variational
representations of the two problems, focusing on their ties.
In Chapter 4, increasing the complexity in the formulation of the problems, we can
show a dynamical representation, recovering the intuitive idea that underlies the two
problems.
In Chapter 5 we write both problems as fluid-dynamic problems under appropriate
constraints using the Benamou–Brenier formulas.
Chapter 6 is where we take stock by studying the representations of problems through
semigroups: as regards optimal transport, we determine explicit representations for
Kantorovich potentials through the Hopf–Lax semigroup; regarding the Schrödinger
problem, instead, we manage to provide the dual representation induced by the Hopf–Cole
semigroup that allows us to connect to the Kantorovich–Rubinstein duality introduced
in Chapter 2.
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Gaspard Monge (1746–1818)

Gaspard Monge was born on May 9, 1746, in Beaune (France).

Figure 3: Jean Naigeon, Portrait de Monge, oil on canvas, 1811, Musée des Beaux-Arts,
Beaune, France.

At the age of 16, he went to Lyon to attend the Collège de la Trinité where, only seventeen
years old, he would already be assigned to teach a physics course. He completed his
education in 1764 and then returned to Beaune where he drew up a plan of the city. For
this work, the year later, he was appointed to the École Royale du Génie at Mézières as a
draftsman. There, Monge got in touch with Charles Bossut. When the latter was elected
to the Académie des Sciences in 1768, the next year Monge succeeded him as professor
of mathematics. In 1771, Monge approached Condorcet who recommended to him to
present memoirs to the Académie des Sciences about his works. Monge submitted four
works on Calculus of Variations, Infinitesimal Geometry, Partial Differential Equations
and Combinatorics. In 1780, he was elected as adjoint géomètre at the Académie des
Sciences in Paris. On September 21, 1789, given his political alignment in favor of
the Revolution, he was offered the post of Minister of the Navy, a position he carried
out with little success. After a few months, he immediately returned to the Académie,
which was then abolished on August 8, 1793. Nominated by the National Convention
on March 11, 1794, to the body for establishing the École Centrale des Travaux Publics,
which would soon become the École Polytechnique, he was appointed there as instructor
in descriptive geometry on November 9, 1794. His lectures here were the origin of his
book "Application de l’analyse à la géométrie", for which he is considered the father of
differential geometry. Further information on his life can be found in [51].

He died on July 28, 1818, in Paris (France).
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Leonid Kantorovich (1912–1986)

Leonid Vitalyevich Kantorovich was born on January 19, 1912, in St. Petersburg
(Russia).

Figure 4: A young Leonid Kantorovich in 1939 (picture from [46]).

Only fourteen years old, he started his mathematical studies at the Leningrad State
University, graduating in 1930 at 18 years old, having reached the level equivalent to a
doctorate and continuing his research at the Mathematical Department of the Faculty of
Physics and Mathematics of Leningrad State University: he would not formally receive
a PhD until 1935 because of the abolition of doctoral degrees by the Soviet Union. In
1930, he was appointed as an assistant in the Naval Engineering School and then, the
following year, as a research associate in his university. In 1932, he became associate
professor in the Department of Numerical Mathematics and from 1934 he was a professor.
His young age was, in a certain sense, a problem; for example, his first lecture became
famous because many students shouted at him to sit down and wait for the professor
to arrive like everyone else: too bad the professor was him. In 1933 he published with
Vladimir Ivanovich Krylov the book Calculus of Variations, the first of his more than
300 contributions to mathematics, economics and computer science. During his career,
he won numerous prizes in both mathematics and economics, including the 1975 Nobel
Prize in Economics for his contribution to the optimal transport theory. In the 1980s,
Kantorovich himself suggested a way to divide up all his contributions, proposing nine
distinct areas: descriptive function theory and set theory, constructive function theory,
approximate methods of analysis; functional analysis, functional analysis and applied
mathematics, linear programming, hardware and software, optimal planning and optimal
prices, the economic problems of a planned economy. Further information on his life
can be found in [52].

He died from cancer on April 7, 1986, in Moscow (USSR).
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Erwin Schrödinger (1887–1961)

Erwin Rudolf Josef Alexander Schrödinger was born on August 12, 1887, in Erdberg
(Austria).

Figure 5: Erwin Schrödinger (picture from [50]).

Up to the age of ten he has been home-schooled by a private tutor and in the autumn
of 1898 he entered the Akademisches Gymnasium, later with respect to usual because
of a long holiday in England. After the graduation in 1906, he entered the University of
Vienna. On May 20, 1910, Schrödinger was awarded his doctorate for the dissertation
On the conduction of electricity on the surface of insulators in moist air and then
undertook voluntary military service. He participated in World War I and, in the spring
of 1917, he was sent back to Vienna and he started to teach a meteorology course. In
1926, Schrödinger published his revolutionary work about the general theory of relativity
and wave mechanics. With his wife’s knowledge, with whom he never had a good
relationship, he had many lovers, including the wife of his colleague Arthur March, Hilde.
When Alexander Lindemann, head of physics at Oxford University, visited Germany
in the spring of 1933, Schrödinger asked him for a position in England for him and
Arthur because he decided he could not live in a country in which the persecution
of Jews had become national policy. In summer 1933 Hilde became pregnant with
Schrödinger’s child and on November 4, 1933, Schrödinger, his wife and Hilde arrived in
Oxford where, after a while, he discovered he had been awarded the Nobel Prize. From
this time, Schrödinger openly had two wives. He went back to Austria and spent the
years 1936–1938 in Graz but on August 26, 1938, the Nazis dismissed him for political
unreliability: it was the consequence of his decision of 1933. After a year in Gent, he
went to Dublin where he remained until he retired in 1956 when he returned to Vienna.
Further information on his life can be found in [50].

He died on January 4, 1961, in Vienna (Austria).





Preliminaries

In this initial part, we describe some general topics and results that will be used in
the subsequent chapters.

1 inf-convolution of functions

(P.1) Definition Consider a metric space (X, d) and a function f : X → [0,+∞[. We
call inf-convolution of f the sequence (Ihf) such that

Ihf(x) = inf
y∈X

{min {f(y), h} + hd(x, y)} .

The main properties of the inf-convolution operator are recalled in the following
Proposition.

(P.2) Proposition Consider a metric space (X, d) and a function f : X → [0,+∞[.
The following facts hold true:

(a) (Ihf) is an increasing sequence,

(b) for every h ∈ N and x ∈ X

Ihf(x) ≥ 0,

(c) for every h ∈ N and x ∈ X

Ihf(x) ≤ f(x), Ihf(x) ≤ h,

(d) for every h ∈ N the function Ihf ∈ Lipb(X),

(e) if f is lower semicontinuous, then Ihf ↗ f pointwise.
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18 PRELIMINARIES

Proof.

(a) Consider h, k ∈ N such that h ≤ k. For every x ∈ X one has

Ihf(x) = inf
y∈X

{min {f(y), h} + hd(x, y)} ≤ inf
y∈X

{min {f(y), k} + kd(x, y)} = Ikf(x),

so (Ihf) is increasing.

(b) It follows directly from the fact that distance is always positive.

(c) It is a straightforward computation: for every h ∈ N and x ∈ X

Ihf(x) = inf
y∈X

{min {f(y), h} + hd(x, y)} ≤ min {f(x), h} + hd(x, x) = min {f(x), h} .

(d) For every h ∈ N, fixed y ∈ X, the function {x 7−→ min {f(y), h} + hd(x, y)} is
Lipschitz, so Ihf , that is the pointwise infimum with respect to y, is also Lipschitz.
Boundedness comes from the second inequality in (c).

(e) First of all, from (a) and the first inequality in (c), for every x ∈ X

(P.3) lim
h

Ihf(x) = sup
h

Ihf(x) ≤ f(x),

then sup
h

Ihf(x) < +∞, since f is finite valued. Now, let us consider a minimizing
sequence (yh) such that

min {f(yh), h} + hd(x, yh) ≤ Ihf(x) + 1
h+ 1 .

In particular, since min {f(yh), h} ≥ 0,

hd(x, yh) ≤ sup
h

Ihf(x) + 1
h+ 1 .

Passing to the limit as h → +∞, the only possibility is d(x, yh) → 0 or, in other words,
yh → x. Now, since hd(x, yh) ≥ 0,

min {f(yh), h} ≤ Ihf(x) + 1
h+ 1

and passing to the lim inf as h → +∞,

lim inf
h

f(yh) ≤ sup
h

Ihf(x).
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Then, by lower semicontinuity of f ,

(P.4) f(x) ≤ Ihf(x).

Combining (P.3) and (P.4), we obtain

lim
h

Ihf(x) = sup
h

Ihf(x) = f(x),

as desired.

2 Push forward of measures

(P.5) Definition Consider two metric spaces (X, dX), (Y, dY ) and a Borel function
f : X → Y . We call push forward operator of f the function f# : R(X) → R(Y ) such
that for all B ∈ B(Y )

f#µ(B) = µ(f−1(B)).

In particular, f#µ is called push forward measure.

Clearly, (g ◦ f)# = g# ◦ f#.

(P.6) Proposition (change of variables formula) Let (X, dX), (Y, dY ) be two metric
spaces and f : X → Y , φ : Y → R Borel functions. If µ ∈ R(X), then

ˆ
Y

φdf#µ =
ˆ
X

(φ ◦ f) dµ.

In particular, a function ψ : X → R is f#µ-integrable if and only if ψ ◦ f is µ-integrable.

Proof. Let us suppose initially φ = χB for some B ∈ B(Y ). Then
ˆ
Y

χBdf#µ =
ˆ
B

df#µ = f#µ(B) = µ(f−1(B)) =

=
ˆ
f−1(B)

dµ =
ˆ
f−1(B)

1 dµ+
ˆ
X\f−1(B)

0 dµ =

=
ˆ
X

χB(f(x))dµ(x) =
ˆ
X

(χB ◦ f)dµ.

By linearity, the same holds true for every B(X)-simple function φ : Y → [0,+∞]. If
φ : Y → [0,+∞] is Borel, the same holds by the monotone convergence Theorem. The
general case and the second part of the statement follow considering the positive and
negative parts of the integrands on both sides.
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(P.7) Example Let (X, dX), (Y, dY ) be two metric spaces and π ∈ R(X × Y ). If
pX : X × Y → X and µ = (pX)#π, then for every Borel function φ : X → R

ˆ
X

φdµ =
ˆ
X

φd(pX)#π =
ˆ
X×Y

(φ ◦ pX)dπ =
ˆ
X×Y

φdπ.

In particular, using the change of variables formula, we can exhibit a quick way to
check the condition f#µ = ν as we can see in the following Proposition.

(P.8) Proposition Let (X, dX), (Y, dY ) be two metric spaces, f : X → Y a Borel
function , µ ∈ R(X) and ν ∈ R(Y ). The following facts are equivalent:

(a) f#µ = ν,

(b) for all φ ∈ Cb(Y ), one has

(P.9)
ˆ
Y

φdν =
ˆ
X

(φ ◦ f) dµ.

Proof.
(a) =⇒ (b) It is a direct consequence of Proposition (P.6).
(b) =⇒ (a) Let us start by noticing that

{
B ∈ B(Y ) : µ(f−1(B)) = ν(B)

}
is a σ-algebra. As a consequence, the condition f#µ = ν needs only to be checked on
a family of generators of B(Y ). In particular, we only need to check f#µ = ν on the
open subsets of Y . Let, therefore, A ⊆ Y be open and for every n ∈ N consider

An =
{
x ∈ A : dist(x, ∂A) ≥ 1

n+ 1

}

and φn : Y → R in Cb(Y ) such that

φn(x) = (1 − (n+ 1)dist(x,An))+ .

Since φn ↗ χA, using the monotone convergence Theorem, (P.9) is also true for φ = χA.
In particular,

f#µ(A) = µ(f−1(A)) =
ˆ
f−1(A)

dµ =
ˆ
X

(χA ◦ f) dµ =
ˆ
Y

χAdν = ν(A).
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(P.10) Lemma Let (X,U), (Y,V) be two measurable spaces, e : X → Y a (U ,V)-
measurable function, µ ∈ M+(X) and v ∈ Lp(X,µ;Rk) with p ∈ ]1,+∞[. Then
e#(vµ) ≪ e#µ with density w ∈ Lp(Y, e#µ;Rk) such that

∥w∥Lp(Y,e#µ;Rk) ≤ ∥v∥Lp(X,µ;Rk).

Proof. Consider φ : Y → Rk bounded and measurable. By Hölder’s inequality,∣∣∣∣∣
ˆ
Y

φde#(vµ)
∣∣∣∣∣=
∣∣∣∣∣
ˆ
X

(φ ◦ e)(x)d(vµ)(x)
∣∣∣∣∣=
∣∣∣∣∣
ˆ
X

(φ ◦ e) · vdµ
∣∣∣∣∣ ≤ ∥v∥Lp(X,µ;Rk)∥φ∥Lp′ (Y,e#µ;Rk)

so the linear operator
φ 7→

ˆ
Y

φde#(vµ)

is continuous with respect to the Lp′(Y, e#µ;Rk) norm. Recalling the density of the
set of bounded and measurable functions in Lp

′(Y, e#µ;Rk), we can easily extend the
previous operator to Lp

′(Y, e#µ;Rk), then, by duality, it is representable by some
w ∈ Lp(Y, e#µ;Rk) such that

∥w∥Lp(Y,e#µ;Rk) ≤ ∥v∥Lp(X,µ;Rk).

The fact that w is the density of e#(vµ) with respect to e#µ follows by construction.

3 Polish spaces and convergence of measures

(P.11) Definition Given a measurable space (X,U) and a measure µ on (X,U), we
call A ∈ U an atom, if µ(A) > 0 and for any B ∈ U such that B ⊆ A one has

0 ∈ {µ(B), µ(A \B)} .

In particular, we call a measure atomic if it admits at least an atom and non-atomic if
it has no atom.

To better comprehend the previous definition, let us build some concrete examples
of atomic and non-atomic measures.

(P.12) Example Consider Rn endowed with the Euclidean distance. The Lebesgue
measure Ln is non-atomic and the Dirac delta measure δ0 is atomic. In particular, the
measure µ = Ln + δ0 is atomic.
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(P.13) Definition Given a metric space (X, d) and µ ∈ R(X), we call support of µ
the set

supt(µ) = {x ∈ X : |µ|(U) > 0 for all U ⊆ X such that U is open and x ∈ U} .

The previous set is closed and, if (X, d) is separable, one can prove that µ ∈ R(X)
is concentrated on supt(µ).

Let us now introduce the fundamental abstract setting in which we will work.

(P.14) Definition Given a topological space (X, τ), we call it Polish space if there
exists a distance d on X such that d induces τ and (X, d) is complete and separable.

In the following, we will always fix a distance for each Polish space, so we will think
of a Polish space (X, τ) as a complete and separable metric space (X, d). One can prove
that every open subset of a Polish space is also Polish (when equipped with the induced
distance): see [1] for the technical details.

(P.15) Lemma (Ulam) If (X, d) is a Polish space, then for every µ ∈ M+(X) and
for every ε > 0 there exists K ⊆ X compact such that µ(X \K) < ε.

Proof. See [1, Lemma 1.5]

For the sake of completeness, let us recall the following fundamental result.

(P.16) Theorem (disintegration) Let (Z, dZ), (X, dX) be Polish spaces, µ ∈ P(Z),
π : Z → X a Borel function and ν = π#µ ∈ P(X). There exists a ν-a.e. uniquely
determined Borel family {µx}x∈X ⊆ P(Z) such that

µx(Z \ π−1(x)) = 0 for ν-a.e. x ∈ X

and for every Borel function f : Z → [0,+∞]
ˆ
Z

f(z)dµ(z) =
ˆ
X

(ˆ
π−1(x)

f(z)dµx(z)
)
dν(x).

Proof. See [19, Chapter III, pp. 78–81].

Despite the tremendous power of the disintegration Theorem, what we will mostly
use is the following Corollary.
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(P.17) Corollary Let (X1, d1), (X2, d2) be Polish spaces, µ ∈ P(X1×X2) and ν = p1
#µ ∈

P(X1). There exists a ν-a.e. uniquely determined Borel family {µx1}x1∈X1
⊆ P(X2)

such that for every Borel function f : X1 ×X2 → [0,+∞]
ˆ
X1×X2

f(x1, x2)dµ(x1, x2) =
ˆ
X1

(ˆ
X2

f(x1, x2)dµx1(x2)
)
dν(x1).

Proof. It is a direct consequence of the identification of (p1)−1(x1) with X2 and the
disintegration Theorem.

We can now pass to introduce the notion of weak convergence of measures: it is a
key choice for the direct method of the Calculus of Variations and also for the geometric
analysis of Wasserstein spaces.

(P.18) Definition Let (X, d) be a metric space and (µn) in R(X). Given µ ∈ R(X),
we say that (µn) weakly converge to µ, and we denote this fact with µn ⇀ µ, if for every
φ ∈ Cb(X)

lim
n

ˆ
X

φdµn =
ˆ
X

φdµ.

In the following Lemmas, which constitute a proper subset of the Portmanteau
Lemma, we explore equivalent definitions for weak convergence of measures in P(X).

(P.19) Lemma Let (µn) in P(X) and µ ∈ P(X). The following facts are equivalent:

(a) µn ⇀ µ in P(X),

(b) for all f ∈ Lipb(X) one has
ˆ
X

fdµn →
ˆ
X

fdµ.

Proof.
(a) =⇒ (b) Obvious.
(b) =⇒ (a) Let f ∈ Cb(X) and consider (Ihf) its inf-convolution. We already know that
(Ihf) is a bounded from below increasing sequence of Lipschitz functions and Ihf ↗ f

pointwise. Consider also (Ih(−f)), a bounded from below and increasing sequence of
Lipschitz functions such that Ih(−f) ↗ −f pointwise. Up to a change in the sign, we
obtain a bounded from above and decreasing sequence (−Ih(−f)) of Lipschitz functions
such that −Ih(−f) ↘ f pointwise.
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Now, for every h ∈ N one has

lim inf
n

ˆ
X

fdµn ≥ lim inf
n

ˆ
X

Ihfdµn =
ˆ
X

Ihfdµ

so passing to the limit as h → +∞, by the monotone convergence Theorem, it results

lim inf
n

ˆ
X

fdµn ≥
ˆ
X

fdµ.

Analogously, using (−Ih(−f)) we have

lim sup
n

ˆ
X

fdµn ≤
ˆ
X

fdµ

and the proof is complete.

(P.20) Lemma Let (µn) in P(X) and µ ∈ P(X). The following facts are equivalent:

(a) µn ⇀ µ in P(X),

(b) for all f : X → R lower semicontinuous and lower bounded one has

lim inf
n

ˆ
X

fdµn ≥
ˆ
X

fdµ.

Proof. It is similar to the proof of Lemma (P.19).

(P.21) Lemma Let (µn) in P(X) and µ ∈ P(X). The following facts are equivalent:

(a) µn ⇀ µ in P(X),

(b) for every A ⊆ X open, one has

lim inf
n

µn(A) ≥ µ(A),

(c) for every C ⊆ X closed, one has

lim sup
n

µn(C) ≤ µ(C).
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Proof.

(a) =⇒ (b) Take χA and consider (IhχA) its inf-convolution. Using the fact that χA is
lower semicontinuous because A is open, we can observe that (IhχA) is a bounded and
increasing sequence of Lipschitz functions such that IhχA ↗ χA pointwise. Now,

lim inf
n

µn(A) = lim inf
n

ˆ
X

χAdµn ≥ lim inf
n

ˆ
X

IhχAdµn,

and using Lemma (P.19),

lim inf
n

µn(A) ≥
ˆ
X

IhχAdµ.

Passing to the limit as h → +∞, by the monotone convergence Theorem,

lim inf
n

µn(A) ≥
ˆ
X

χAdµ = µ(A).

(b) ⇐⇒ (c) By the fact that µn is a finite measure,

µn(C) = µn(X) − µn(X \ C).

Now,
lim sup

n
µn(C) ≤ lim sup

n
µn(X) − lim inf

n
µn(X \ C),

but µn(X) = µ(X) = 1 and using (b) we obtain

lim sup
n

µn(C) ≤ µ(X) − µ(X \ C) = µ(C).

The converse implication is similar.

(b) =⇒ (a) For every f ∈ Cb(X) positive, Fubini–Tonelli’s Theorem implies

ˆ
X

fdµn =
ˆ sup f

0
µn({f > t})dt.

Let us prove that for all t > 0 such that µ({f = t}) = 0, one has

lim
n
µn({f > t}) = µ({f > t}).

Using (b), we can first of all write

µ({f > t}) ≤ lim inf
n

µn({f > t}).
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Now,
µ({f > t}) = µ({f > t}) + µ({f = t}) = µ({f ≥ t})

and using (c) we can affirm that

µ({f > t}) ≤ lim inf
n

µn({f > t}) ≤ lim sup
n

µn({f > t}) ≤

≤ lim sup
n

µn({f ≥ t}) ≤ µ({f ≥ t}) = µ({f > t})

so
lim
n
µn({f > t}) = µ({f > t}).

Using this fact and the dominated convergence Theorem,

lim
n

ˆ
X

fdµn = lim
n

ˆ sup f

0
µn({f > t})dt =

ˆ
X

fdµ.

The general case follows by splitting the positive and negative parts of a function
f ∈ Cb(X).

Thanks to the notion of weak convergence, we can define a topology on R(X): it
is sufficient to define closed sets as the set containing the limits of every one of their
sequences. We will refer to this construction as weak topology. Unless otherwise specified,
we will always consider R(X) endowed with the weak topology. The following is a
geometrical analysis result about P(X): the proof is based on Riesz’s Theorem and
Banach–Alaoglu–Bourbaki’s Theorem, for which we refer to [9].

(P.22) Theorem If (X, d) is a compact metric space, then P(X) is weakly compact.

Proof. By [9, Theorem 4.31], R(X), endowed with total variation norm, is isometric to
its dual, C(X). In this sense, weak convergence induces the weak* topology so, by [9,
Theorem 3.16], being P(X) the closed unit ball of R(X), the thesis follows.

In order to show a compactness criterion in M+(X), we introduce the notion of
tightness.

(P.23) Definition Let (X, d) be a Polish space and F ⊆ M+(X) such that sup
µ∈F

µ(X) <

+∞. We call F tight if for every ε > 0 there exists K ⊆ X compact such that for all
µ ∈ F one has µ(X \K) < ε.

(P.24) Theorem (Prokhorov) Let (X, d) be a Polish space and F ⊆ M+(X) such
that

sup
µ∈F

µ(X) < +∞.
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Then F is weakly compact if and only if F is tight.

Proof. Without loss of generality, we can only consider the case F ⊆ P(X). Indeed,
given

F ′ =
{
µ′ ∈ P(X) : ∀ E ∈ B(X) µ′(E) = µ(E)

µ(X) , µ ∈ F
}
,

suppose F ′ is weakly compact. Given (µn) in F , consider (µ′
n) in F ′. By weak

compactness, there exist (µ′
nj

) in F ′ and µ′ ∈ F ′ such that µ′
nj
⇀ µ′ in F ′. In particular,

µnj
⇀ µ in F and so F is weakly compact.
Suppose that F ⊆ P(X) is tight. By definition, we can find an increasing sequence

(Kh) of compact subsets of X such that

lim
h

sup
µ∈F

µ(X \Kh) = 0.

Let (µn) be in F . For every h ∈ N, if we consider (µn⌊Kh)n in P(Kh), weakly compact
thanks to the compactness of Kh, then there exist (µnj

⌊Kh)j in P(Kh) and νh ∈ P(Kh)
such that µnj

⌊Kh ⇀ νk in P(Kh). Up to defining, for A ∈ B(X), νh(A) = 0 if
A∩Kh = ∅, we can view νh as a measure in P(X) with support in Kh and we have that
µnj

⌊Kh ⇀ νk in P(X). In particular, by the fact that (Kh) is an increasing sequence,
νk ≤ νk+1.

Now,

1 − sup
µ∈F

µ(X \Kh) ≤ µnj
(Z) − µnj

(X \Kh) = µnj
(Z ∩Kh) = µnj

⌊Kh(X) ≤ 1,

then passing to the limit as j → +∞ we obtain

1 − sup
µ∈F

µ(X \Kh) ≤ νk(X) ≤ 1,

therefore, observing that additivity comes from the monotonicity of (νh),

ν = sup
h∈N

νh ∈ P(X).

Now, given φ ∈ Cb(X), one has
∣∣∣∣∣
ˆ
X

φd(µnj
− ν)

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ
X

φd(µnj
− µnj

⌊Kh)
∣∣∣∣∣+

∣∣∣∣∣
ˆ
X

φd(µnj
⌊Kh − νh)

∣∣∣∣∣+
∣∣∣∣∣
ˆ
X

φd(νh − ν)
∣∣∣∣∣ ≤

≤ supφ sup
µ∈F

µ(X \Kh) + +
∣∣∣∣∣
ˆ
X

φd(µnj
⌊Kh − νh)

∣∣∣∣∣+
∣∣∣∣∣
ˆ
X

φd(νh − ν)
∣∣∣∣∣
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and taking j, h → +∞

lim
j

∣∣∣∣∣
ˆ
X

φd(µnj
− ν)

∣∣∣∣∣ = 0,

then F is weakly compact.
Suppose now that F is weakly compact. Fixed ε > 0 and (xi) in X such that

{xi : i ∈ N} = X,

we want to prove that for any j ∈ N there exists kj ∈ N such that for all µ ∈ F ,

µ

X \
kj⋃
i=0

B
(
xi,

1
j + 1

) ≤ 2−jε.

Suppose the claim is false, then there exists j0 ∈ N such that for any k ∈ N there exists
µk ∈ F such that

µk

(
X \

k⋃
i=0

B
(
xi,

1
j0 + 1

))
> 2−j0ε.

By weak compactness of F , there exist (µkn) in P(X) and µ ∈ P(X) such that µkn ⇀ µ.
If n → +∞, one has

µ

(
X \

k⋃
i=0

B
(
xi,

1
j0 + 1

))
≥ 2−j0ε,

but if k → +∞, we obtain 0 ≥ 2−j0ε, in contradiction with ε > 0.
The claim proved implies that sup

µ∈F
µ(X \K) ≤ ε, where

K =
∞⋂
j=0

kj⋃
i=0

B
(
xi,

1
j + 1

)
,

so F is tight.

4 Convex Analysis: a toolbox

In the following section, unless otherwise specified, we will assume that X and Y

are two sets and c : X × Y → R is a Borel function.

(P.25) Definition We call G ⊆ X × Y c-cyclically monotone if for every n ∈ N \ {0},
(x1, y1), . . . , (xn, yn) ∈ G and every permutation σ

n∑
i=1

c(xi, yσ(i)) ≥
n∑
i=1

c(xi, yi).
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(P.26) Definition Given φ : X → [−∞,+∞[, we call c-conjugate of φ, the function

φc(y) = inf
x∈X

{c(x, y) − φ(x)} .

Analogously, if ψ : Y → [−∞,+∞[, we call c-conjugate of ψ, the function

ψc(x) = inf
y∈Y

{c(x, y) − φ(y)} .

(P.27) Definition We call f : X × Y → R c-affine if it is of the form c(·, y) + α or
c(x, ·) + β for some x ∈ X, y ∈ Y, α, β ∈ R. Moreover, we call a function φ : X →
[−∞,+∞[ c-concave , if it is the infimum of a family of c-affine functions of the form
c(·, y) + α. Analogously, we call a function ψ : Y → [−∞,+∞[ c-concave, if it is the
infimum of a family of c-affine functions of the form c(x, ·) + β.

One can prove that φ : X → [−∞,+∞[ is c-concave if and only if it is the c-conjugate
of a function ψ.

(P.28) Proposition Consider (X, d) a metric space and a function φ : X → R. The
following facts are equivalent:

(a) φ is d-concave,

(b) φ ∈ Lip(X) and Lip(φ) ≤ 1.

In particular, in this case φc = −φ.

Proof.
(a) =⇒ (b) Let φ be d-concave. Then there exists ψ : X → R ∪ {+∞} such that for
every x ∈ X

φ(x) = ψc(x) = inf
y∈X

{d(x, y) − ψ(y)} .

Fixed y ∈ X, for every x, z ∈ X, by the triangle inequality,

d(x, y) − ψ(y) − (d(z, y) − ψ(y)) = d(x, y) − d(z, y) ≤ d(x, z)

then, the function {x 7→ d(x, y) − ψ(y)} ∈ Lip(X) has a Lipschitz constant less than or
equal to 1. Being φ the infimum of the family above, it follows that φ ∈ Lip(X) and
Lip(φ) ≤ 1.
(b) =⇒ (a) Let φ ∈ Lip(X) and Lip(φ) ≤ 1. Let us prove that for every x ∈ X

(P.29) φ(x) = inf
y∈X

{d(x, y) + φ(y)} .
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Clearly,
inf
y∈X

{d(x, y) + φ(y)} ≤ φ(x).

On the other hand, |φ(x) − φ(y)| ≤ d(x, y) so in particular φ(x) − φ(y) ≤ d(x, y) then

φ(x) ≤ d(x, y) + φ(y)

and passing to the infimum for y ∈ X we obtain

φ(x) ≤ inf
y∈X

{d(x, y) + φ(y)} .

Observing that (P.29) corresponds to φ = (−φ)c and applying this fact to −φ we
obtain φc = −φ.

(P.30) Theorem If φ : X → [−∞,+∞[ and φ ̸= −∞, then (φc)c ≥ φ.
In particular, the equality holds if and only if φ is c-concave.

Proof. See [1, Theorem 3.14].

(P.31) Definition Given φ : X → [−∞,+∞[ and x ∈ X such that φ(x) > −∞ we
call c-subdifferential of φ in x the set

∂cφ(x) = {y ∈ Y : φ(ξ) ≤ φ(x) − c(x, y) + c(ξ, y), ∀ξ ∈ X} .

One can prove that φ(x) + φc(y) = c(x, y) if and only if y ∈ ∂cφ(x), if and only if
x ∈ ∂cφ(y).

(P.32) Theorem Let G ⊆ X×Y be c-cyclically monotone. Then there exists a c-concave
function φ : X → [−∞,+∞[ such that G ⊆ graph(∂cφ).

Proof. Fixed (x0, y0) ∈ G, the function

φ(x) = inf
n∈N\{0}

(x1,y1),...,(xn,yn)∈supt(π)

(c(x, yn) − c(xn, yn) + c(xn, yn−1) − c(xn−1, yn−1) + · · · +

+c(x1, y0) − c(x0, y0))

satisfies the required condition and also φ(x0) = 0. See [1, Theorem 3.18] for further
details.
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5 Absolutely continuous curves and geodesics

In the following section, unless otherwise specified, we will consider a metric space
(X, d). We are interested in defining geodesics, so we only consider curves that are not
loops, namely functions γ : [a, b] → X such that γ(a) ̸= γ(b). Let us start from the most
general container: absolutely continuous curves.

(P.33) Definition Let a, b ∈ R. We call γ : [a, b] → X an absolutely continuous curve,
and we write γ ∈ AC([a, b];X), if there exists g ∈ L1(a, b) such that for all x, y ∈ [a, b]
such that x ≤ y one has

d(γ(y), γ(x)) ≤
ˆ y

x

g(t)dt.

If g ∈ Lp(a, b) for some p ∈ ]1,+∞], then we write γ ∈ ACp([a, b];X).

(P.34) Lemma Let a, b ∈ R. If γ : [a, b] → X is an absolutely continuous curve, then
it is uniformly continuous.

Proof. We already know that for all g ∈ L1(a, b), for all ε > 0, there exists δ > 0 such
that for every B ∈ B([a, b]) with L1(B) < δ one has

ˆ
B

|g|dL1 < ε.

Therefore, if x, y ∈ [a, b], and without loss of generality x ≤ y, with L1([x, y]) = |x−y| <
δ one has

d(γ(y), γ(x)) ≤
ˆ y

x

|g|dL1 < ε

as required.

For a very general setting, we only define the absolute value of the derivative of an
absolutely continuous curve; meanwhile, when we are in the Euclidean case, everything
will be much simpler. In any case, existence and uniqueness are given by the following
Theorem.

(P.35) Theorem Let a, b ∈ R. For any γ ∈ AC([a, b];X), the limit

lim
h→0

d(γ(t), γ(t+ h))
|h|

exists for a.e. t ∈ ]a, b[. In particular, this limit is the minimal g that we can choose in
the definition of an absolutely continuous curve, up to L1-negligible sets.
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Proof. By Weierstrass Theorem, up to replacing X with γ([a, b]), we can assume X to
be compact.

Consider (zi) a countable and dense subset of X and define for every i ∈ N a function
fi : [a, b] → R such that

fi(t) = d(γ(t), zi).

The fact that fi is well defined comes from the compactness of X. Using the triangle
inequality and the definition of an absolutely continuous curve, for every x, y ∈ [a, b]
such that x ≤ y, we can write for any admissible g ∈ L1(a, b)

|fi(y) − fi(x)| ≤ d(γ(y), γ(x)) ≤
ˆ y

x

gdL1,

So, up to repeating the estimate for y ≤ x, we can affirm that (fi) in AC([a, b];X), then,
for every i ∈ N, f ′

i exists a.e. in ]a, b[ and since

|fi(y) − fi(x)| =
ˆ y

x

f ′dL1,

we have for every x, y ∈ ]a, b[ such that x ≤ y

ˆ y

x

−gdL1 ≤
ˆ y

x

f ′dL1 ≤
ˆ y

x

gdL1

so −g ≤ f ′ ≤ g a.e. in ]a, b[. In other words, |f ′
i | ≤ g a.e. in ]a, b[. By the fact that

sup
i∈N

|f ′
i(t)| ≤ g a.e. in ]a, b[ ,

then sup
i∈N

|f ′
i(t)| ∈ L1(a, b). Consider now t ∈ ]a, b[ such that f ′

i(t) exists for any i ∈ N,
then by triangle inequality

lim inf
h→0

d(γ(t+ h), γ(t))
|h|

≥ lim inf
h→0

|fi(t+ h) − fi(t)|
|h|

= |f ′
i(t)|

and passing to the supremum

lim inf
h→0

d(γ(t+ h), γ(t))
|h|

≥ sup
i∈N

|f ′
i(t)|.

Now, if h > 0, we have

|fi(t+ h) − fi(t)| ≤
ˆ t+h

t

|f ′
i |dL1 ≤

ˆ t+h

t

sup
i∈N

|f ′
i |dL1.
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Let us show that

sup
i∈N

|d(γ(t+ h), zi) − d(γ(t), zi)| = d(γ(t+ h), γ(t)).

By triangle inequality, for every i ∈ N,

|d(γ(t+ h), zi) − d(γ(t), zi)| ≤ d(γ(t+ h), γ(t))

so
sup
i∈N

|d(γ(t+ h), zi) − d(γ(t), zi)| ≤ d(γ(t+ h), γ(t)).

On the other hand, by density, there exists (zij ) such that zij → γ(t) so, by continuity
of the distance,

sup
i∈N

|d(γ(t+ h), zi) − d(γ(t), zi)| ≥ sup
j∈N

|d(γ(t+ h), zij ) − d(γ(t), zij )| = d(γ(t+ h), γ(t)).

We have therefore arrived at

sup
i∈N

|fi(t+ h) − fi(t)| = sup
i∈N

|d(γ(t+ h), zi) − d(γ(t), zi)| = d(γ(t+ h), γ(t))

so
d(γ(t+ h), γ(t)) ≤

ˆ t+h

t

sup
i∈N

|f ′
i |dL1.

Considering t a Lebesgue point of sup
i∈N

|f ′
i |, we obtain

lim sup
h→0+

d(γ(t+ h), γ(t))
h

≤ lim
h→0+

1
h

ˆ t+h

t

sup
i∈N

|f ′
i |dL1 = sup

i∈N
|f ′
i |(t).

Being able to build an analogous estimate for h < 0, we obtain for a.e. t ∈ ]a, b[

lim
h→0

d(γ(t), γ(t+ h))
|h|

= sup
i∈N

|f ′
i(t)|.

(P.36) Definition Let a, b ∈ R. For any γ ∈ AC([a, b];X) we call metric derivative of
γ the function |γ′| : ]a, b[ → R defined up to negligible sets by

|γ′|(t) = lim
h→0

d(γ(t), γ(t+ h))
|h|

.

(P.37) Lemma Let (X, d) be a metric space, γ : [0, 1] → X a curve and g ∈ L2(0, 1)
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a.e. positive such that for every s, t ∈ [0, 1] with s ≤ t

d2(γ(s), γ(t)) ≤ (t− s)
ˆ t

s

g2dL1.

Then γ ∈ AC2([0, 1];X) and |γ′| ≤ g a.e. in (0, 1).

Proof. First of all, by Young’s inequality, for every s, t ∈ [0, 1] with s ≤ t, using the
assumption,

d(γ(s), γ(t)) ≤

√√√√(t− s)
ˆ t

s

g2dL1 ≤ 1
2(t− s) + 1

2

ˆ t

s

g2dL1 = 1
2

ˆ t

s

(1 + g2)dL1,

so γ ∈ AC([0, 1];X). In particular, it is well defined |γ′|(t), and by the fact that for a.e.
t ∈ [0, 1]

d2(γ(t+ h), γ(t))
h2 ≤ 1

h2h

ˆ t+h

t

g2dL1,

we have for a.e. t ∈ [0, 1], by Lebesgue’s points Theorem,

|γ′|(t) = lim
h→0

d(γ(t+ h), γ(t))
|h|

≤ lim
h→0

√√√√ 1
h2h

ˆ t+h

t

g2dL1 = g(t)

so |γ′| ∈ L2(0, 1) and the estimate holds.

In order to arrive at the definition of geodesics, we have to talk about the length of
curves.

(P.38) Definition Let a, b ∈ R. For any γ ∈ AC([a, b];X) we call length of γ

l(γ) =
ˆ b

a

|γ′|(t)dt.

Arranging what has been said so far, it is clear that l(γ) ≥ d(γ(a), γ(b)).

(P.39) Definition Let a, b ∈ R. We say that γ ∈ AC([a, b];X) has constant speed if
|γ′| is, up to negligible sets, a constant.

(P.40) Lemma Let a, b ∈ R. If γ ∈ AC([a, b];X) has constant speed, then it is
Lipschitz.
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Proof. From the definition of absolutely continuous curve, combined with Theorem
(P.35), for all x, y ∈ [a, b] such that x ≤ y one has

d(γ(x), γ(y)) ≤
ˆ y

x

|γ′|dt ≤ |γ′||x− y|.

If y ≤ x the argument is analogous, so the result follows.

Even if constant-speed curves seem like something new, they are actually nothing
more than reparameterizations of absolutely continuous curves, as we can see in the
next Proposition.

(P.41) Proposition Let a, b ∈ R. For any γ ∈ AC([a, b];X), there exists γ̃ ∈
AC([0, 1];X) with constant speed equal to l(γ) such that γ([a, b]) = γ̃([0, 1]), γ(a) = γ̃(0),
and γ(b) = γ̃(1).

Proof. We only consider the case when
{
t 7→ l(γ|[a,t])

}
is strictly increasing in [a, b].

Consider L : [a, b] → [0, l(γ)] such that

L(t) = l(γ|[a,t]).

From the definition of an absolutely continuous curve, for every u, v ∈ [0, l(γ)] such that
u ≤ v,

d(γ(L−1(u)), γ(L−1(v))) ≤
ˆ L−1(v)

L−1(u)
|γ′|dL1 =

ˆ L−1(v)

a

|γ′|dL1 −
ˆ L−1(u)

a

|γ′|dL1 = v − u

so γ ◦ L−1 : [0, l(γ)] → X is Lipschitz. On the other hand, by the invariance of the
length under reparameterization

l(γ) = l(γ ◦ L−1) =
ˆ l(γ)

0
|(γ ◦ L−1)′|dL1,

so it must be |(γ ◦L−1)′| = 1 a.e. in ]0, l(γ)[. The desired reparameterization is obtained
up to a linear rescaling of γ ◦ L−1.

We finally arrive at defining geodesics.

(P.42) Definition Let a, b ∈ R. We say that γ ∈ AC([a, b];X) is a geodesic if

l(γ) = d(γ(a), γ(b)).
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(P.43) Lemma Let a, b ∈ R. If γ ∈ AC([a, b];X) is a geodesic, then for every
c, d ∈ [a, b] such that c ≤ d also γ|[c,d] is a geodesic and the metric derivatives coincide
a.e. in ]c, d[.

Proof. We only need to prove that

d(γ(c), γ(d)) ≥
ˆ d

c

|γ′|dL1.

By triangle inequality, Theorem (P.35) and the fact that γ is geodesic, one has

d(γ(a), γ(b)) ≤ d(γ(a), γ(c)) + d(γ(c), γ(d)) + d(γ(d), γ(b)) ≤

≤
ˆ c

a

|γ′|dL1 +
ˆ d

c

|γ′|dL1 +
ˆ b

d

|γ′|dL1 =

=
ˆ b

a

|γ′|dL1 = d(γ(a), γ(b))

so

d(γ(a), γ(c)) + d(γ(c), γ(d)) + d(γ(d), γ(b)) =
ˆ c

a

|γ′|dL1 +
ˆ d

c

|γ′|dL1 +
ˆ b

d

|γ′|dL1 ≥

≥ d(γ(a), γ(c)) +
ˆ d

c

|γ′|dL1 + d(γ(d), γ(b)).

In particular,

d(γ(c), γ(d)) ≥
ˆ d

c

|γ′|dL1

and the result follows.

(P.44) Notation We denote with Geo(X) the set

Geo(X) = {γ ∈ AC([0, 1];X) : |γ′| = l(γ) = d(γ(0), γ(1))} .

The set Geo(X) admits the following characterization.

(P.45) Proposition Consider a curve γ : [0, 1] → X. The following facts are
equivalent:

(a) γ ∈ Geo(X),

(b) for every s, t ∈ [0, 1] one has

d(γ(s), γ(t)) = |s− t|d(γ(0), γ(1)),
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(c) for every s, t ∈ [0, 1] one has

d(γ(s), γ(t)) ≤ |s− t|d(γ(0), γ(1)).

Proof.
(a) =⇒ (b) If γ ∈ Geo(X), for every s, t ∈ [0, 1] such that s ≤ t also γ|[s,t] is a geodesic
with the same constant speed |γ′|(t) = l(γ) = d(γ(0), γ(1)), so

d(γ(s), γ(t)) = l(γ|[s,t]) =
ˆ t

s

|γ′|dL1 = |s− t|d(γ(0), γ(1)).

The case t ≤ s is analogous.
(b) =⇒ (c) Obvious.
(c) =⇒ (a) Let us start by saying that γ ∈ AC([0, 1];X): indeed, for every s, t ∈ [0, 1]
with s ≤ t we have

d(γ(s), γ(t)) ≤ |s− t|d(γ(0), γ(1)) =
ˆ t

s

d(γ(0), γ(1))dL1.

In particular, by Theorem (P.35), for a.e. t ∈ ]0, 1[

|γ′|(t) ≤ d(γ(0), γ(1)).

Integrating with respect to t we have
ˆ 1

0
|γ′|dL1 ≤ d(γ(0), γ(1))

and remembering that
ˆ 1

0
|γ′|dL1 = l(γ) ≥ d(γ(0), γ(1))

we obtain
d(γ(0), γ(1)) ≤ l(γ) ≤ d(γ(0), γ(1)).

In other words,
l(γ) = d(γ(0), γ(1)),

so γ is a geodesic.
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It only remains to prove that |γ′| = d(γ(0), γ(1)) a.e. in ]0, 1[. Suppose not, then

L1⌊[0, 1]({|γ′| < d(γ(0), γ(1))}) > 0.

Consider the measurable sets

A = {t ∈ [0, 1] : |γ′|(t) < d(γ(0), γ(1))}

and
B = {t ∈ [0, 1] : |γ′|(t) = d(γ(0), γ(1))} .

Since |γ′| ≤ d(γ(0), γ(1)) a.e. in ]0, 1[, we have

1 = L1({t ∈ [0, 1] : |γ′|(t) ≤ d(γ(0), γ(1))}) = L1(A) + L1(B),

so
ˆ 1

0
|γ′|dL1 =

ˆ
A

|γ′|dL1 +
ˆ
B

|γ′|dL1 < d(γ(0), γ(1))(L1(A) + L1(B)) = d(γ(0), γ(1))

that is a contradiction. In conclusion γ ∈ Geo(X).

(P.46) Lemma Geo(X) ⊆ C([0, 1];X) is closed.

Proof. Consider (γh) in Geo(X) such that γh → γ in C([0, 1];X). By continuity of
distance and the characterization of Geo(X), we get γ ∈ Geo(X).

(P.47) Remark If (X, d) is Polish, then C([0, 1];X) is Polish as well.

(P.48) Notation Given t ∈ [0, 1], we denote with et : C([0, 1];X) → X the evaluation
map, namely

et(γ) = γ(t).

(P.49) Definition We call action the functional A2 : C([0, 1];X) → [0,+∞] such that

A2(γ) =


´ 1

0 |γ′|2dL1 if γ ∈ AC2([0, 1];X),

+∞ if γ ∈ C([0, 1];X) \ AC2([0, 1];X).

One can prove that A2 is lower semicontinuous.

(P.50) Lemma If γ ∈ AC2([0, 1];X), then γ is 1
2-Hölder.
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Proof. If x, y ∈ [0, 1] such that x ≤ y, one has, by Hölder’s inequality,

d(γ(x), γ(y)) ≤
ˆ y

x

|γ′|dL1 =
ˆ 1

0
χ[x,y]|γ′|dL1 ≤

(ˆ 1

0
χ2

[x,y]dL1
) 1

2
(ˆ 1

0
|γ′|2dL1

) 1
2

so
d(γ(x), γ(y)) ≤ A

1
2
2 (γ)|x− y|

1
2 .

If y ≤ x the argument is analogous and the result follows.

(P.51) Lemma Let γ ∈ AC([0, 1];X). The following facts are equivalent:

(a) γ ∈ Geo(X),

(b) A2(γ) = d2(γ(0), γ(1)).

Proof.
(a) =⇒ (b) If γ ∈ Geo(X), |γ′| = l(γ) = d(γ(0), γ(1)), so

A2(γ) =
ˆ 1

0
d2(γ(0), γ(1))dL1 = d2(γ(0), γ(1)).

(b) =⇒ (a) Using Hölder’s inequality, we can write

d2(γ(0), γ(1)) ≤ l2(γ) =
(ˆ 1

0
|γ′|dL1

)2

≤
ˆ 1

0
|γ′|2dL1 = A2

2(γ) = d2(γ(0), γ(1)),

so
l(γ) = d(γ(0), γ(1))

and by the fact that Hölder’s inequality holds as an equality, |γ′| has to be a constant
up to a negligible set.

(P.52) Definition A metric space (X, d) is called geodesic if for every x, y ∈ X there
exists γ ∈ Geo(X) with γ(0) = x and γ(1) = y.

(P.53) Notation Unless otherwise specified, we denote a curve Υ : [0, 1] → P(X) such
that Υ(t) = µt, where {µt}t∈[0,1] in P(X), with

µt : [0, 1] → P(X).
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(P.54) Definition Consider a curve µt : [0, 1] → P(X). We say that η ∈ P(C([0, 1];X))
is a lifting of µt if for every t ∈ [0, 1] one has

(et)#η = µt.

(P.55) Proposition Consider a curve µt : [0, 1] → P(X). If there exists a lifting
η ∈ P(C([0, 1]);X) of µt, then µt is weakly continuous.

Proof. Consider t ∈ [0, 1] and (th) in [0, 1] such that th → t. First of all, given
γ ∈ C([0, 1];X) and (γh) in C([0, 1];X) such that γh → γ in C([0, 1];X), for every
s ∈ [0, 1] we have

|es(γh) − es(γ)| ≤ |γh(s) − γ(s)| ≤ ∥γh − γ∥∞

so es is continuous. In particular, given f ∈ Cb(X), for every γ ∈ C([0, 1];X)

lim
h
f(eth(γ)) = f(et(γ)).

Observing also that |f(eth(γ))| ≤ ∥f∥∞ ∈ L1(C([0, 1];X), η), so, applying the dominated
convergence Theorem, we obtain

lim
h

ˆ
X

fdµth = lim
h

ˆ
X

f(x)d(eth)#η(x) =

= lim
h

ˆ
C([0,1];X)

f(eth(γ))dη(γ) =
ˆ
C([0,1];X)

f(et(γ))dη(γ) =
ˆ
X

fdµt,

hence µt is weakly continuous.

The following is a variant of the classical Ascoli–Arzelà’s Theorem.

(P.56) Theorem If F ⊆ C([0, 1];X) is such that sup
γ∈F

A2 < +∞ and there exists

D ⊆ [0, 1] such that D = [0, 1] and for all t ∈ D

{γ(t) : γ ∈ F}

is compact in X, then F is compact in C([0, 1];X).

Proof. See [1, Theorem 10.3].

We will need the following result.
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(P.57) Theorem (random Ascoli–Arzelà) If F ⊆ P(C([0, 1];X)) is such that

sup
η∈F

ˆ
C([0,1];X)

A2dη(γ) < +∞

and there exists D ⊆ [0, 1] such that D = [0, 1] and, for all t ∈ D, {(et)#η : η ∈ F} is
tight in P(X), then F is tight in P(C([0, 1];X)).

Proof. See [1, Theorem 10.4].





Chapter 1

Static representations

1 The Monge problem

Contrary to what usually happens, we want to start with an example to understand,
in an intuitive but physical way, the problem we would then like to formulate in an
abstract environment.

(1.1) Example Consider a box filled with Spectre tiles.

Figure 1.1: A spectre tile (picture from [54]).

Our goal is to make a complete tessellation of the floor using Spectre tiles, spending
as little effort as possible. In other words, we have to decide which is the best position
for each tile in order to minimize the effort to transport it from the box to the floor.

More details on Spectre tiles can be found in [63]. However, the above example is a
modern reformulation of Monge’s original idea that can be found in [47]. The essential
element is the following: seeking the best function to transport each mass unit from the
initial configuration to the final one.

Once we have intuitively understood the problem, we are now ready for the general
and abstract definition. We specify that we will only deal with the case of measures

43
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with finite and equal mass: in other words, if (X, dX), (Y, dY ) are two metric spaces, we
will only consider the case of µ ∈ M+(X), ν ∈ M+(Y ) such that µ(X) = ν(Y ) < +∞.
Without loss of generality, we will also consider only normalized measures, namely
µ ∈ P(X), ν ∈ P(Y ).

(1.2) Definition Let (X, dX), (Y, dY ) be two metric spaces, µ ∈ P(X), ν ∈ P(Y ) and
c : X × Y → [0,∞[ a Borel function called cost function. In the so-called Monge
(optimal transport) problem we look for

inf
{
Cµ(T ) =

ˆ
X

c(x, T (x))dµ(x) : T : X → Y Borel, T#µ = ν

}
.

In particular, we call transport map every T : X → Y Borel such that T#µ = ν and
optimal map every minimizer of the above problem.

Notice that we only work with finite costs: our goal is, in fact, to apply the general
theory to the case in which the cost function is the squared distance, as we will see
from Chapter 3. To better comprehend, also quantitatively, the Monge problem, let us
analyze a very simple example in which we can solve the problem explicitly. From a
physical point of view, the idea is very trivial: the best way to transport the mass of a
rod in itself is to not move anything.

(1.3) Example Consider X = Y = [0, 1], equipped with the Euclidean distance,
µ = ν = L1⌊[0, 1] and c : [0, 1] × [0, 1] → [0,∞[ such that

c(x, y) = |x− y|.

In this simplified setting, the Monge problem reads as

inf
{
Cµ(T ) =

ˆ 1

0
|x− T (x)|dx : T : X → Y Borel, T#µ = ν

}
.

Given any B ∈ B([0, 1]), we have

T#µ(B) = µ(T−1(B)) = L1(T−1(B))

and
ν(B) = L1(B),

so the constraint can be rewritten as L1(B) = L1(T−1(B)). In other words, every
transport map must be a Borel, volume-preserving function. Observing that for every
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transport map Cµ(T ) ≥ 0, we directly have

inf
{
Cµ(T ) =

ˆ 1

0
|x− T (x)|dx : T : X → Y Borel, T#µ = ν

}
≥ 0.

Combining the fact that Id obviously satisfies the constraint and Cµ(Id) = 0, we obtain

min
{
Cµ(T ) =

ˆ 1

0
|x− T (x)|dx : T : X → Y Borel, T#µ = ν

}
= 0.

In particular, by the fact that
ˆ 1

0
|x− T (x)|dx = 0 ⇐⇒ T (x) = x a.e. in [0, 1],

we also get that Id is the unique optimal map in L0([0, 1]).

Unfortunately, the Monge problem can be ill posed, as we can see in the following
example in which the domain of the problem is the empty set.

(1.4) Example If µ = δx0 for some x0 ∈ X, then for each B ∈ B(Y )

T#δx0(B) = δx0(T−1(B)) = δT (x0)(B).

So if ν ∈ P(Y ) is not a Dirac delta, there does not exist any transport map.

By the innate fallacy of Monge’s formulation, the need for a different definition
arises.

2 The Kantorovich problem

The aim of this section is to present and analyze the reformulation of the optimal
transport problem carried out by Kantorovich.

In the same way as in the previous section, we start our discussion with an intuitive,
but physical, example to understand the basic idea under the abstract formulation that
we will later see.

(1.5) Example Suppose that in the province of Brescia there are x1, . . . , xn mills and
y1, . . . , ym bakeries. Every mill produces µi flour and every bakery needs νj flour. If we
call c(xi, yj) the unit transport cost from the mill xi to the bakery yj and πij the flour
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transported from the mill xi to the bakery yj, the global transport cost is

n∑
i=1

m∑
j=1

c(xi, yj)πij.

Our goal is to minimize the cost by selecting the best way to transport all flour from the
mills to the bakeries. Clearly, πij has some constraints to respect:

• the quantity of flour that came out from each mill must be equal to the sum of the
amounts of flour transported from the aforementioned mill to each bakery,

• the quantity of flour received by each bakery must be equal to the sum of the amounts
of flour transported to the aforementioned bakery from each mill,

• the flour transported must be a positive quantity.

In other words,

n∑
i=1

πij = νj,
m∑
j=1

πij = µi, πij ≥ 0.

In the previous example, a new actor enters the scene to replace Monge’s transport
map. It is the amount of mass transported from the starting space to the target space.
In order to relax the problem, following the idea of Kantorovich seen in [34], we use this
new way to define the constraint.

(1.6) Definition Let (X, dX), (Y, dY ) be two metric spaces. Given µ ∈ P(X), ν ∈ P(Y ),
we call Γ(µ, ν) the set of π ∈ P(X ×Y ) such that for all A ∈ B(X), B ∈ B(Y ) one has

π(A× Y ) = µ(A), π(X ×B) = ν(B).(1.7)

We call transport plan from µ to ν every π ∈ Γ(µ, ν).

Physically speaking, π(A×B) represents the mass, initially in A, sent in B.
One of the main advantages of using a transport plan instead of a transport map is

the good shape of Γ(µ, ν), as shown in the following.

(1.8) Proposition Let (X, dX), (Y, dY ) be two metric spaces. If µ ∈ P(X) and ν ∈
P(Y ), then Γ(µ, ν) is not empty and convex.

Proof. First of all, we have to remember that every measure in P(X × Y ) is uniquely
determined by its value on Cartesian products of Borel sets. Consider now the measure
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µ⊗ ν : B(X × Y ) → [0, 1] such that for every A ∈ B(X), B ∈ B(Y )

(µ⊗ ν)(A×B) = µ(A)ν(B).

It is straightforward that µ⊗ ν ∈ Γ(µ, ν).
Now, given π1, π2 ∈ Γ(µ, ν) and λ ∈ [0, 1], for every A ∈ B(X), B ∈ B(Y ) one has

(λπ1 + (1 − λ)π2)(A× Y ) = λπ1(A× Y ) + (1 − λ)π2(A× Y ) =
= λµ(A) + (1 − λ)µ(A) = µ(A)

and

(λπ1 + (1 − λ)π2)(X ×B) = λπ1(X ×B) + (1 − λ)π2(X ×B) =
= λν(B) + (1 − λ)ν(B) = ν(B),

so λπ1 + (1 − λ)π2 ∈ Γ(µ, ν), namely Γ(µ, ν) is convex.

It will be useful to highlight equivalent conditions for (1.7).

(1.9) Proposition Let (X, dX), (Y, dY ) be two metric spaces, µ ∈ P(X) and ν ∈ P(Y ).
Consider π ∈ P(X × Y ). The following facts are equivalent:

(a) π ∈ Γ(µ, ν),

(b) (pX)#π = µ and (pY )#π = ν.

Proof. Consider A ∈ B(X). By the fact that p−1
X (A) = A×X, the equivalence between

the first relations in (1.7) and in (b) follows directly. The reasoning for the second ones
is similar.

Kantorovich’s formulation for the optimal transport problem is the following.

(1.10) Definition Let (X, dX), (Y, dY ) be two metric spaces, µ ∈ P(X), ν ∈ P(Y ) and
a Borel function c : X × Y → [0,∞[ called cost function. In the so-called Kantorovich
(optimal transport) problem we look for

inf
{
C(π) =

ˆ
X×Y

c(x, y)dπ(x, y) : π ∈ Γ(µ, ν)
}
.

In particular, we call optimal plan every minimizer of the above problem.
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We highlight that the assumptions are the same as in the Monge problem, but, if we
compare Example (1.4) and Proposition (1.8), we understand that the Monge problem
and the Kantorovich problem in general are not equivalent: the second is always well
posed. When, in the following, we refer to the primal representation of the optimal
transport problem, we will always mean in the sense of the Kantorovich problem.

(1.11) Remark The above problem is symmetric: switching coordinates, we can pass
from Γ(µ, ν) to Γ(ν, µ).

Once given the abstract definition of the problem, we now tackle the problem of the
existence of optimal plans for the Kantorovich problem in a Polish setting and under
the assumption of lower semicontinuous cost.

Let us start proving the weak lower semicontinuity of C: we use inf-convolution of
the cost and we pass to the limit thanks to the monotone convergence Theorem.

(1.12) Proposition Let (X, dX), (Y, dY ) be two metric spaces, µ ∈ P(X) and ν ∈ P(Y ).
If c : X × Y → [0,+∞[ is a Borel lower semicontinuous function, then {π 7→ C(π)} is
weakly lower semicontinuous in P(X × Y ).

Proof. Consider (Ihc), the inf-convolution of the cost. We already know that (Ihc) is a
bounded from below increasing sequence of Lipschitz functions and Ihc ↗ c pointwise.

Now, given (πn) in P(X × Y ) and π ∈ P(X × Y ) such that πn ⇀ π in P(X × Y ),
by weak convergence

lim
n

ˆ
X×Y

Ihcdπn =
ˆ
X×Y

Ihcdπ,

but, from the fact that Ihc ≤ c,

lim inf
n

C(πn) = lim inf
n

ˆ
X×Y

cdπn ≥ lim inf
n

ˆ
X×Y

Ihcdπn

and the conclusion follows, by the monotone convergence Theorem, passing to the limits
as h → +∞.

Although the proof of the weak lower semicontinuity of C is done in a general
metric setting, to prove the compactness of Γ(µ, ν) we need to strengthen the structure
restricting to Polish spaces: we will use Ulam’s Lemma and Prokhorov’s Theorem to
demonstrate the following result.

(1.13) Proposition Let (X, dX), (Y, dY ) be Polish spaces, µ ∈ P(X) and ν ∈ P(Y ).
The set Γ(µ, ν) is weakly compact.
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Proof. Let us start by saying that the marginal conditions
ˆ
X

φdµ =
ˆ
X×Y

φdπ, ∀φ ∈ Cb(X),

ˆ
X

ψdν =
ˆ
X×Y

ψdπ, ∀ψ ∈ Cb(Y )

imply that Γ(µ, ν) is weakly closed. By Ulam’s Lemma, for every ε > 0 there exist
K ⊆ X, K̃ ⊆ Y compacts such that µ(X \K) < ε

2 and µ(Y \ K̃) < ε
2 . Thus,

π(X × Y \K × K̃) ≤ π((X \K) × Y ) + π(X × (Y \ K̃)) < ε,

thanks to the marginal conditions, implies that Γ(µ, ν) is tight. The conclusion follows
from Prokhorov’s Theorem.

We are now ready to prove the existence of optimal plans for the Kantorovich problem
using the direct method of the Calculus of Variations.

(1.14) Theorem Let (X, dX), (Y, dY ) be Polish spaces, µ ∈ P(X), ν ∈ P(Y ) and
c : X × Y → [0,+∞[ lower semicontinuous. There exists an optimal plan.

Proof. Consider (πh) in Γ(µ, ν) such that

lim
h
C(πh) = inf

π∈Γ(µ,ν)
C(π).

By Proposition (1.13), we know that Γ(µ, ν) is weakly compact, so there exist (πhk
) in

Γ(µ, ν) and π0 ∈ Γ(µ, ν) such that πh ⇀ π0 in Γ(µ, ν). So, by Proposition (1.12),

C(π0) ≤ lim inf
k

C(πhk
) = inf

π∈Γ(µ,ν)
C(π),

then
C(π0) = min

π∈Γ(µ,ν)
C(π)

and the result follows.

Before proceeding further, let us analyze in more detail the relationship between
Monge’s formulation and Kantorovich’s one. Given a transport map T , we can define
the associated transport plan

πT = (Id, T )#µ
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where (Id, T ) : X → X × Y is the function such that (Id, T )(x) = (x, T (x)). By the
change of variables formula, it follows

C(πT ) =
ˆ
X×Y

c(x, y)d(Id, T )#µ(x, y) =

=
ˆ
X

(c ◦ (Id, T ))(x)dµ(x) =
ˆ
X

c(x, T (x))dµ(x) = Cµ(T ).

In particular,
inf

π∈Γ(µ,ν)
C(π) ≤ Cµ(T )

and passing through the infimum with respect to T ,

inf
π∈Γ(µ,ν)

C(π) ≤ inf
T

transport map

Cµ(T ).

Clearly, the inequality can be strict because the domain of the Monge problem can be
the empty set. In an attempt at completeness, we highlight that under some regularity
assumptions, the two formulations can be recovered as equivalent.

(1.15) Theorem (Pratelli) Let (X, dX), (Y, dY ) be Polish spaces, µ ∈ P(X) non-
atomic, ν ∈ P(Y ) and c : X × Y → [0,+∞[ continuous. It holds

min
π∈Γ(µ,ν)

C(π) = inf
T

transport map

Cµ(T ).

Proof. See [56].

(1.16) Remark In the following chapters, we will understand the particular importance
of quadratic distance cost, namely

c(x, y) = d2(x, y),

which fully fits into the theory we have presented in this section since it is a continuous,
positive and finite function.

3 The entropy functional

In Information Theory, entropy means the amount of information contained in a
message and transferred through a communication channel. The first study is due to
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Claude Shannon in 1948: the interested reader can find further details in the original
article [62].

The most interesting aspect, that we underline just intuitively, is that, under some
structural assumptions, there is a link between Shannon’s entropy and Boltzmann’s one:
the phrase "when disorder increases, information is lost" is a good summary. Further
information on this topic can be found in [25] or in [31].

Coming back to us, in order to introduce the entropy functional, we first need three
technical results.

(1.17) Proposition Consider a metric space (X, d) and µ, ν ∈ R+(X). If ν ≪ µ, then
dν
dµ
> 0 ν-a.e. in X.

Proof. We already know that dν
dµ

≥ 0 µ-a.e. in X, so dν
dµ

≥ 0 ν-a.e. in X. Now, consider

A =
{
x ∈ X : dν

dµ
(x) = 0

}
.

By contradiction, if ν(A) > 0, we obtain

0 < ν(A) =
ˆ
A

dν

dµ
dµ = 0.

(1.18) Proposition Consider a Polish space (X, d) and R : B(X) → [0,+∞] a Borel
σ-finite measure. There exists a Borel function W : X → [0,+∞[ such that

ˆ
X

e−WdR < +∞.

Proof. By the σ-finiteness of R, there exists (An) in B(X) a sequence of disjoint Borel
subsets of X such that

X =
∞⋃
n=0

An, ∀ n ∈ N : R(An) < +∞.

If we take W : X → [0,+∞[ such that

W (x) =



− log 1
R(A0)+1 if x ∈ A0,

...

− log 1
2n(R(An)+1) if x ∈ An,

...
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then
ˆ
X

e−WdR =
∞∑
n=0

ˆ
An

e−WdR =
∞∑
n=0

ˆ
An

1
2n(R(An) + 1)dR ≤

∞∑
n=0

1
2n = 2 < +∞

and the result follows.

(1.19) Proposition Consider a Polish space (X, d). If R ∈ R+(X), then R is σ-finite.

Proof. First of all, there exists Q ⊆ X at most countable such that Q = X. Now,
since R ∈ R+(X), it is locally finite, so for every q ∈ Q there exists Uq ∈ B(X), a
neighborhood of q, such that R(Uq) < +∞. Up to substituting Uq with int(Uq) ⊆ Uq,
we can assume Uq to be open. Clearly,

⋃
q∈Q

Uq ⊆ X.

Now, if x ∈ X, there exists (qn) in X such that qn → x. In particular, there exists
N ∈ N such that for every n ≥ N we have x ∈ Uqn , so

X ⊆
⋃
q∈Q

Uq.

By the fact that Q is at most countable, the result follows.

We can now proceed to provide the definition of the entropy functional: another
name, by which it can be found in literature, is Kullback—Leibler divergence. This last
name comes from Statistics, where divergences are particular statistical distances. It is
not, actually, a distance.

(1.20) Definition Consider a Polish space (X, d), R ∈ R+(X), a Borel function
W : X → [0,+∞[ such that ˆ

X

e−WdR < +∞,

RW = 1´
X e−W dRe

−WR ∈ P(X) and σ ∈ P(X) such that

ˆ
X

Wdσ < +∞.

We call (Boltzmann–Shannon) entropy of σ relative to R the extended real number

H(σ | R) = Hp(σ | RW ) −
ˆ
X

Wdσ − log
(ˆ

X

e−WdR
)
,
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where

Hp(σ | RW ) =


´
X

dσ
dRW

log dσ
dRW

dRW if σ ≪ RW ,

+∞ otherwise.

In particular, we define the function HR such that

HR(σ) = H(σ | R).

Even if the previous definition may seem complex, every time entropy is well defined,
with some simple computations it turns out

H(σ | R) = Hp(σ | R).

Let us underline that if σ ≪ R,
ˆ
X

dσ

dR log
(
dσ

dR

)
dR =

ˆ
X

log
(
dσ

dR

)
dσ.

(1.21) Proposition The previous definition is well posed.

Proof. Consider W ′ : X → [0,+∞[ another Borel function such that
ˆ
X

e−W ′
dR < +∞,

ˆ
X

W ′dσ < +∞.

First of all, if H(σ | R) is well defined, then H(σ | R) = Hp(σ | R), so

Hp(σ | RW )−
ˆ
X

Wdσ−log
(ˆ

X

e−WdR
)

= Hp(σ | RW ′)−
ˆ
X

W ′dσ−log
(ˆ

X

e−W ′
dR
)
.

Combining this fact with Proposition (1.17), Proposition (1.18) and Proposition (1.19),
the result follows.

(1.22) Proposition Consider a Polish space (X, d) and R, σ ∈ P(X). Then the
entropy is well defined and, in particular,

H(σ | R) =


´
X

dσ
dR log

(
dσ
dR

)
dR if σ ≪ R,

+∞ otherwise.
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Proof. Consider W = 0. Then
ˆ
X

e−W ′
dR = 1 < +∞,

ˆ
X

W ′dσ = 0 < +∞.

In particular, HR is well defined on P(X) and H(σ | R) = Hp(σ | RW ). By the fact that
RW = R, the result follows.

We will need to consider, in the following, the strictly convex function h : [0,+∞] →
[−1

e
,+∞] such that

h(x) =

x log x if x > 0,

0 if x = 0.

1
e

1

Figure 1.2: The graph of the function h.

We collect in the following Proposition the main properties of the entropy functional.

(1.23) Proposition Let (X, d) be a Polish space and R ∈ R+(X). The following facts
hold true:

(a) if R ∈ P(X), then HR is positive,

(b) HR is convex. In particular, where HR is finite, it is strictly convex,

(c) if R ∈ P(X), then HR(σ) = 0 if and only if σ = R.
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Proof.

(a) If σ is not absolutely continuous with respect to R, HR(σ) = +∞ > 0. Otherwise,
by Jensen’s inequality,

0 = h(1) = h

(
1

R(X)σ(X)
)

= h

(
1

R(X)

ˆ
X

dσ

dRdR
)

≤ 1
R(X)

ˆ
X

h

(
dσ

dR

)
dR = HR(σ).

(b) Let σ1, σ2 ∈ P(X) and λ ∈ [0, 1]. If at least one, between σ1 and σ2, is not absolutely
continuous with respect to R, either is λσ1 + (1 − λ)σ2, so

HR(λσ1 + (1 − λ)σ2) = +∞ = λHR(σ1) + (1 − λ)HR(σ2).

Otherwise, if σ1, σ2 ≪ R, so is λσ1 + (1 − λ)σ2 and, by the convexity of h and the
linearity of Radon–Nikodym derivative,

HR(λσ1 + (1 − λ)σ2) =
ˆ
X

h

(
d

dR (λσ1 + (1 − λ)σ2)
)
dR =

=
ˆ
X

h

(
λ
dσ1

dR + (1 − λ)dσ2

dR

)
dR ≤

≤ λHR(σ1) + (1 − λ)HR(σ2).

In particular, the strict convexity of h gives us that also HR is strictly convex where it
is finite.

(c) If HR(σ) = 0, σ ≪ R. By the fact that

0 = H(σ | R) =
ˆ
X

(
dσ

dR log
(
dσ

dR

)
− dσ

dR + 1
)
dR

and the fact that for every x ≥ 0, x log x− x+ 1 ≥ 0, where the equality holds if and
only if x = 1, we obtain dσ

dR = 1, so σ = R.

Conversely, if σ = R, in particular σ ≪ R and dσ
dR = 1. A straightforward computation

then provides
HR(σ) =

ˆ
X

0dR = 0.

The following variational representations will be fundamental.

(1.24) Lemma Consider a metric space (X, d), R ∈ R+(X) and σ ∈ P(X) such that
HR(σ) is well defined. The following facts hold true:
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(a) it results

H(σ | R) = sup
{ˆ

X

φdσ − log
(ˆ

X

eφdR
)

: φ : X → R bounded and Borel
}
,

(b) it results

H(σ | R) = sup
{ˆ

X

φdσ − log
(ˆ

X

eφdR
)

: φ ∈ Cb(X)
}
,

(c) it results

H(σ | R) = sup
{ˆ

X

φdσ − log
(ˆ

X

eφdR
)

: φ : X → R Borel,
ˆ
X

eφdR < +∞
}
.

Proof.
(a) Denote with

M = sup
{ˆ

X

φdσ − log
(ˆ

X

eφdR
)

: φ : X → R bounded and Borel
}
.

Consider initially the case σ ≪ R. For every φ : X → R bounded and Borel consider
ψ : X → ]0,+∞[ bounded and Borel such that ψ = eφ. If

ˆ
X

ψdR = +∞,

then ˆ
X

φdσ − log
(ˆ

X

eφdR
)

= −∞

and there is nothing to prove. Conversely, in the case
ˆ
X

ψdR < +∞,

by the fact that ψ > 0 R-a.e. in X, we can define the measure R′ ∈ P(X) such that for
every B ∈ B(X)

R′(B) = 1´
X
ψdR

ˆ
B

ψdR.
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By uniqueness of Radon–Nikodym derivative,

dσ

dR = dσ

dR′
dR′

dR = dσ

dR′
ψ´

X
ψdR ,

so

H(σ | R) =
ˆ
X

dσ

dR log
(
dσ

dR

)
dR = 1´

X
ψdR

ˆ
X

dσ

dR′ψ log
(
dσ

dR′
ψ´

X
ψdR

)
dR =

= 1´
X
ψdR

ˆ
X

dσ

dR′ log
(
dσ

dR′

)
ψdR + 1´

X
ψdR

ˆ
X

dσ

dR′ψ logψdR+

− 1´
X
ψdR

ˆ
X

dσ

dR′ψ log
(ˆ

X

ψdR
)
dR =

=
ˆ
X

dσ

dR′ log
(
dσ

dR′

)
dR′ +

ˆ
X

dσ

dR′ logψdR′ −
ˆ
X

dσ

dR′ log
(ˆ

X

ψdR
)
dR′ =

= H(σ | R′) +
ˆ
X

logψdσ − log
(ˆ

X

ψdR
)

≥

≥
ˆ
X

logψdσ − log
(ˆ

X

ψdR
)

=
ˆ
X

φdσ − log
(ˆ

X

eφdR
)
.

In particular,
H(σ | R) ≥ M.

If H(σ | R) < +∞, consider (φn) such that for every n ∈ N \ {0}

φn = log
(

max
{

1
n
,min

{
dσ

dR , n
}})

.

First of all, ˆ
X

dσ

dR log
(
dσ

dR

)
dR = H(σ | R) < +∞,

and, since x(log x)− ≤ 1
e
,

ˆ
X

(
log

(
dσ

dR

))−

dσ =
ˆ
X

(
log

(
dσ

dRW

)
−W − log

(ˆ
X

e−WdR
))−

dσ ≤

≤
ˆ
X

dσ

dRW
log

(
dσ

dRW

)
dRW + ∥W∥L1(X,σ) +

∣∣∣∣∣log
(ˆ

X

e−WdR
)∣∣∣∣∣ <

< +∞,
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so, log
(
dσ
dR

)
∈ L1(X, σ). In particular, dσ

dR log
(
dσ
dR

)
∈ L1(X,R). By the fact that,

dσ

dRφn → dσ

dR log
(
dσ

dR

)
R-a.e. in X,∣∣∣∣∣dσdR

(
φn − log

(
dσ

dR

))∣∣∣∣∣ ≤ 2
∣∣∣∣∣dσdR log

(
dσ

dR

)∣∣∣∣∣ ∈ L1(X,R),

by the dominated convergence Theorem, we have dσ
dRφn → dσ

dR log
(
dσ
dR

)
in L1(X,R). In

the same way, eφn → dσ
dR in L1(X,R). In particular, from

M ≥
ˆ
X

φndσ − log
(ˆ

X

eφndR
)
,

using the convergence properties of Lebesgue spaces, the continuity of logarithm and
the dominated convergence Theorem, we obtain

M ≥
ˆ
X

log
(
dσ

dR

)
dσ − log σ(X) = H(σ | R).

Instead, if H(σ | R) = +∞, using the same argument as before, we can find a sequence
(φn) of positive Borel functions such that φn → log

(
dσ
dR

)
pointwise. As before, applying

Fatou’s Lemma in place of the dominated convergence Theorem,

+∞ = H(σ | R) ≤ M.

If σ is not absolutely continuous with respect to R, clearly H(σ | R) = +∞ and
there exists S ∈ B(X) such that R(S) = 0 but σ(S) > 0. Consider the sequence (φn) of
Borel functions such that

φn(x) =

n if x ∈ S,

0 if x ∈ X \ S,

then

M ≥ lim
n

(ˆ
X

φndσ − log
(ˆ

X

eφndR
))

= lim
n

(ˆ
S

ndσ − log
(ˆ

X\S
1dR

))
= +∞.

(b) It follows from (a) and the density of Cb(X) in L1(X,R).
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(c) Clearly, using (a),

H(σ | R) ≤ sup
{ˆ

X

φdσ − log
(ˆ

X

eφdR
)

: φ : X → R Borel,
ˆ
X

eφdR < +∞
}
.

Conversely, if H(σ | R) = +∞ we are done, otherwise we are in the case σ ≪ R and, in
the same way as is (a),

H(σ | R) ≥ sup
{ˆ

X

φdσ − log
(ˆ

X

eφdR
)

: φ : X → R Borel,
ˆ
X

eφdR < +∞
}
.

We want now to prove that the entropy functional is convex and lower semicontinuous:
this will be crucial in order to apply the direct method of the Calculus of Variations in
the following section.

(1.25) Proposition Consider a metric space (X, d) and R ∈ R+(X). The function
{(σ,R) 7→ H(σ | R)}, when it is well defined, is convex and weakly lower semicontinuous.
In particular, the function HR is weakly lower semicontinuous when it is well defined.

Proof. First of all, by Lemma (1.24),

H(σ | R) = sup
{ˆ

X

φdσ − log
(ˆ

X

eφdR
)

: φ ∈ Cb(X)
}
.

Fixed φ ∈ Cb(X), the function
{

(σ,R) 7→
ˆ
X

φdσ − log
(ˆ

X

eφdR
)}

is linear, hence convex, and weakly continuous, so we also obtain the desired convexity
and lower semicontinuity of {(σ,R) 7→ H(σ | R)}.

4 Primal Schrödinger problem

In 1931, Erwin Schrödinger proposed in [61] an interpolation problem on Brownian
particles that would later be called the Schrödinger problem.

(1.26) Proposition Consider a Polish space (X, d), R ∈ R+(X × X) and µ0, µ1 ∈
P(X). Suppose there exists a Borel function B : X → [0,+∞[ such that
ˆ
X×X

e−B(x)−B(y)dR(x, y) < +∞,

ˆ
X

B(x)dµ0(x) < +∞,

ˆ
X

B(x)dµ1(x) < +∞.
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Then HR is well defined on Γ(µ0, µ1) by

HR(σ) = Hp(σ | RW ) −
ˆ
X

Bdµ0 −
ˆ
X

Bdµ1 − log
(ˆ

X

e−WdR
)
.

Proof. Consider W (x, y) = B(x) +B(y). By assumption,
ˆ
X×X

e−WdR < +∞

and if π ∈ Γ(µ0, µ1), using the change of variables formula,
ˆ
X×X

Wdπ =
ˆ
X×X

B(x)dπ(x, y) +
ˆ
X×X

B(y)dπ(x, y) =
ˆ
X

Bdµ0 +
ˆ
X

Bdµ1 < +∞,

so the result follows.

Having shown that entropy is well defined on Γ(µ0, µ1), under a small technicality,
we can give the abstract formulation of the problem.

(1.27) Definition Consider a Polish space (X, d), R ∈ R+(X×X) and µ0, µ1 ∈ P(X).
Suppose there exists a Borel function B : X → [0,+∞[ such that
ˆ
X×X

e−B(x)−B(y)dR(x, y) < +∞,

ˆ
X

B(x)dµ0(x) < +∞,

ˆ
X

B(x)dµ1(x) < +∞.

In the so-called Schrödinger problem we look for

inf {HR(π) : π ∈ Γ(µ0, µ1)} .

The goal of the section is to prove, under some technical assumptions, existence,
uniqueness and also a certain structural formula for the solution of the Schrödinger
problem: the proof is an expansion of the one contained in [28]. As regards the first
part of the statement, we used the direct method of the Calculus of Variations to prove
existence, uniqueness descends directly from the strict convexity of the entropy functional
and the structural formula comes from a Corollary of Hahn–Banach’s Theorems. The
second part gives a realistic case in which the first part is applicable, two functional
inequalities tied to the solution of the problem and a theoretical information on the latter:
the proof is, somehow, a direct computation and relies, also, on Du Bois-Reymond’s
Lemma.
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(1.28) Theorem Consider a Polish space (X, d), m ∈ R+(X) and R ∈ R+(X×X) such
that (p1)#R = (p2)#R = m and m ⊗ m ≪ R ≪ m ⊗ m. Let µ0 = ϱ0m, µ1 = ϱ1m ∈ P(X)
and

P0 = {x ∈ X : ϱ0(x) > 0} , P1 = {x ∈ X : ϱ1(x) > 0} ,

defined up to m-negligible sets. If there exists a Borel function B : X → [0,+∞[ such
that
ˆ
X×X

e−B(x)−B(y)dR(x, y) < +∞,

ˆ
X

B(x)dµ0(x) < +∞,

ˆ
X

B(x)dµ1(x) < +∞,

then the following facts hold true:

(a) if H(µ0 ⊗ µ1 | R) < +∞, then there exists a unique minimizer γ of HR in Γ(µ0, µ1).

In particular, there exists two Borel functions f, g : X → [0,+∞[, unique m-a.e. in
X up to a rescaling

{
(f, g) 7→ (cf, g

c
)
}

with some c > 0, such that

γ = (f ⊗ g)R,

(b) if ϱ0, ϱ1 ∈ L∞(X,m) and there exists c > 0 such that R ≥ cm ⊗ m in P0 × P1, then
H(µ0 ⊗ µ1 | R) < +∞. In particular, f, g ∈ L1(X,m) ∩ L∞(X,m) with

∥f∥L∞(X,m)∥g∥L1(X,m) ≤
∥ϱ0∥L∞(X,m)

c
, ∥f∥L1(X,m)∥g∥L∞(X,m) ≤

∥ϱ1∥L∞(X,m)

c

and γ is the only transport plan of the form (f ′ ⊗ g′)R for some Borel functions
f ′, g′ : X → [0,+∞[.

Proof.
(a) First of all, by Proposition (1.13), Γ(µ0, µ1) is weakly compact. Furthermore, by
Proposition (1.25), HR is weakly lower semicontinuous, so there exists γ ∈ Γ(µ0, µ1)
such that

HR(γ) = min
π∈Γ(µ0,µ1)

HR(π).

In particular,
HR(γ) ≤ HR(µ0 ⊗ µ1) < +∞,

so γ ≪ R and, using Proposition (1.23), HR is strictly convex where it is finite, so the
uniqueness of γ comes.
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For the second part of the statement, let us underline that the uniqueness property
of (f, g) comes from the definition of f ⊗ g. In particular, it is sufficient to prove the
existence of an appropriate pair (f, g).

Now, remembering that m ⊗ m ≪ R ≪ m ⊗ m, let us prove that

dγ

dR > 0 m ⊗ m-a.e. in P0 × P1.

By contradiction, suppose

R
(

(P0 × P1) ∩
{
x ∈ X : dγ

dR = 0
})

> 0.

Given λ ∈ ]0, 1[, using the convexity of h,

h
(
dγ
dR + λ

(
d(µ0⊗µ1)

dR − dγ
dR

))
− h

(
dγ
dR

)
λ

≤ h

(
d(µ0 ⊗ µ1)

dR

)
− h

(
dγ

dR

)
∈ L1(X ×X,R)

and as λ → 0+

h
(
dγ
dR + λ

(
d(µ0⊗µ1)

dR − dγ
dR

))
− h

(
dγ
dR

)
λ

↘ −∞ R-a.e. in (P0 × P1) ∩
{
x ∈ X : dγ

dR = 0
}
,

so by the monotone convergence Theorem

lim
λ→0+

HR (γ + λ (µ0 ⊗ µ1 − γ)) −HR (γ)
λ

= −∞ in (P0 × P1) ∩
{
x ∈ X : dγ

dR = 0
}
,

but the minimality of γ ensures

HR (γ + λ (µ0 ⊗ µ1 − γ)) −HR (γ) ≥ 0 in (P0 × P1) ∩
{
x ∈ X : dγ

dR = 0
}
,

because γ+λ (µ0 ⊗ µ1 − γ) ∈ Γ(µ0, µ1), so using the sign permanence Theorem, it must
be

lim
λ→0+

HR (γ + λ (µ0 ⊗ µ1 − γ)) −HR (γ)
λ

≥ 0 in (P0 × P1) ∩
{
x ∈ X : dγ

dR = 0
}
,

that provides the contradiction.

Now, consider the set

U =
{
u ∈ L∞(X ×X, γ) : (p1)#(uγ) = (p2)#(uγ) = 0

}
.
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Take u ∈ U and ε ∈
]
0, 1

∥u∥L∞(X×X,γ)

[
. Observing that (1 + εu)γ ∈ Γ(µ0, µ1) and u dγ

dR is
well defined R-a.e. in X ×X, one has∥∥∥∥∥h
(

(1 + εu)dγ
dR

)∥∥∥∥∥
L1(X×X,R)

=
ˆ
X×X

∣∣∣∣∣(1 + εu)dγ
dR log

(
(1 + εu)dγ

dR

)∣∣∣∣∣dR =

=
ˆ
X×X

∣∣∣∣∣(1 + εu)dγ
dR log (1 + εu) + (1 + εu)dγ

dR log
(
dγ

dR

)∣∣∣∣∣dR ≤

≤
ˆ
X×X

∣∣∣∣∣(1 + εu)dγ
dR log (1 + εu)

∣∣∣∣∣dR+

+
ˆ
X×X

∣∣∣∣∣(1 + εu)dγ
dR log

(
dγ

dR

)∣∣∣∣∣dR,
≤
ˆ
X×X

(1 + εu)|log (1 + εu)|dγ +
ˆ
X×X

(1 + εu)
∣∣∣∣∣log

(
dγ

dR

)∣∣∣∣∣dγ
≤ ∥(1 + εu) log(1 + εu)∥L∞(X×X,γ)+

+ ∥1 + εu∥L∞(X×X,γ)

ˆ
X×X

∣∣∣∣∣log
(
dγ

dR

)∣∣∣∣∣dγ ≤

≤ ∥(1 + εu) log(1 + εw)∥L∞(X×X,γ)+

+ ∥1 + εu∥L∞(X×X,γ)

∥∥∥∥∥dγdR log
(
dγ

dR

)∥∥∥∥∥
L1(X×X,R)

< +∞,

so h
(
(1 + εu) dγ

dR

)
∈ L1(X × X,R). In the same way as before, using the monotone

convergence Theorem,

lim
ε→0+

HR((1 + εu)γ) −HR(γ)
ε

=
ˆ
X×X

u
dγ

dR

(
log

(
dγ

dR

)
+ 1

)
dR.

Using again minimality of γ and the sign permanence Theorem,
ˆ
X×X

u
dγ

dR

(
log

(
dγ

dR

)
+ 1

)
dR ≥ 0.

In particular, since ˆ
X×X

u
dγ

dRdR =
ˆ
X×X

udγ = 0,

we have ˆ
X×X

u
dγ

dR log
(
dγ

dR

)
dR ≥ 0.
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Up to switching u with −u, we obtain
ˆ
X×X

u
dγ

dR log
(
dγ

dR

)
dR ≤ 0,

then ˆ
X×X

u
dγ

dR log
(
dγ

dR

)
dR = 0, for every u ∈ U,

or, in other words, log
(
dγ
dR

)
∈ ⊥U . Consider the subspace of L1(X ×X, γ)

V =
{
f ∈ L1(X ×X, γ) : f = φ⊕ ψ, φ ∈ L0(X,m⌊P0), ψ ∈ L0(X,m⌊P1)

}
.

It is sufficient to prove that ⊥U ⊆ V .

Let us start showing that V is closed in L1(X ×X, γ). To show this, we can initially
observe that

f ∈ V ⇐⇒
(
f ∈ L1(X ×X, γ) and f(x, y) + f(x′, y′) = f(x, y′) + f(x′, y)

for m ⊗ m ⊗ m ⊗ m-a.e. (x, x′, y, y′) ∈ P0 × P0 × P1 × P1
)
.

This comes directly as follows: if f ∈ V , clearly f ∈ L1(X × X, γ) and there exist
φ ∈ L0(X,m⌊P0), ψ ∈ L0(X,m⌊P1) such that

f(x, y) = φ(x) + ψ(y), m ⊗ m-a.e. (x, y) ∈ P0 × P1

f(x′, y′) = φ(x′) + ψ(y′), m ⊗ m-a.e. (x′, y′) ∈ P0 × P1

so, summing both sides,

f(x, y)+f(x′, y′) = f(x, y′)+f(x′, y), m⊗m⊗m⊗m-a.e. (x, x′, y, y′) ∈ P0×P0×P1×P1;

conversely, if f ∈ L1(X ×X, γ) and

f(x, y)+f(x′, y′) = f(x, y′)+f(x′, y), m⊗m⊗m⊗m-a.e. (x, x′, y, y′) ∈ P0×P0×P1×P1,

by Fubini’s Theorem, the function {x 7→ f(x, y)} (resp. {y 7→ f(x, y)}) is Borel for
m-a.e. y ∈ P1 (resp. m-a.e. x ∈ P0) so, setting φ(x) = f(x, y′), ψ(y) = f(x′, y) for some
admissible (x′, y′) ∈ P0 × P1, it results f = φ + ψ, then f ∈ V . By the fact that the
condition

f(x, y)+f(x′, y′) = f(x, y′)+f(x′, y), m⊗m⊗m⊗m-a.e. (x, x′, y, y′) ∈ P0×P0×P1×P1
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is stable with respect to L1(X ×X, γ) convergence, we can affirm that V is closed in
L1(X ×X, γ).

Let us now prove that V ⊥ ⊆ U . If ũ ∈ L∞(X ×X, γ) \ U , one of the marginals of
ũγ is non-zero. If it is the first marginal to be non-zero, by the fact that (p1)#γ = µ0,
for every Borel function ϑ : X → R, using Corollary (P.17),

ˆ
X×X

(ϑ ◦ p1)(x, y)d(ũγ)(x, y) =
ˆ
X×X

ϑ(x)d(ũγ)(x, y) =

=
ˆ
X×X

ϑ(x)ũ(x, y)dγ(x, y) =

=
ˆ
X

(ˆ
X

ϑ(x)ũ(x, y)dγx(y)
)
dµ0(x) =

=
ˆ
X

ϑ(x)f0(x)dµ0(x) =
ˆ
X

ϑ(x)d(f0µ0)(x),

where
f0(x) =

ˆ
X

ϑ(x)ũ(x, y)dγx(y),

that is, by Proposition (P.8), (p1)#(ũγ) = f0µ0. In particular, f0 ⊕ 0 = f0 ◦ p1 ∈ V and
ˆ
X

ũ(f0 ⊕ 0)dγ =
ˆ
X

f0 ◦ p1d(ũγ) =
ˆ
X

f0d(p1)#(ũγ) =
ˆ
X

f 2
0dµ0 > 0,

so ũ /∈ V ⊥.

We can finally prove that ⊥U ⊆ V . If f ∈ L1(X ×X, γ) \ V , by the fact that V is
closed, applying [9, Corollary 1.8], we can find u ∈ (L1(X × X, γ))′ ∼= L∞(X × X, γ)
such that for every f̂ ∈ V ˆ

X

f̂udγ = 0

and

(1.29)
ˆ
X

fudγ = 1.

In particular, u ∈ V ⊥ ⊆ U and, by (1.29), f /∈ ⊥U .

(b) First of all, using our assumptions,
ˆ
X×X

e−B(x)−B(y)d(m ⊗ m)⌊(P0 × P1) =
ˆ
P0×P1

e−B(x)−B(y)d(m ⊗ m) ≤

≤ 1
c

ˆ
P0×P1

e−B(x)−B(y)dR ≤
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≤ 1
c

ˆ
X×X

e−B(x)−B(y)dR < +∞.

Now, we know that µ0, µ1 ≪ m, so µ0 ⊗ µ1 ≪ m ⊗ m. If A ∈ B(X ×X) such that

1´
X
e−B(x)−B(y)d(m ⊗ m)⌊(P0 × P1)

ˆ
A

e−B(x)−B(y)d(m ⊗ m) = 0,

by strict positivity of the integrand, it must be (m ⊗ m)(A) = 0, so

m ⊗ m ≪ e−B(x)−B(y)´
X
e−B(x)−B(y)d(m ⊗ m)⌊(P0 × P1)

(m ⊗ m).

In particular,

(µ0 ⊗ µ1) ≪ e−B(x)−B(y)´
X
e−B(x)−B(y)d(m ⊗ m)⌊(P0 × P1)

(m ⊗ m)⌊(P0 × P1)

and, from this, we have

Hp

(
µ0 ⊗ µ1 | e−B(x)−B(y)´

X×X e
−B(x)−B(y)d(m ⊗ m)⌊(P0 × P1)

(m ⊗ m)⌊(P0 × P1)
)

=

=
ˆ
X×X

log


d(µ0 ⊗ µ1)

d

(
e−B(x)−B(y)´

X×X e
−B(x)−B(y)d(m ⊗ m)⌊(P0 × P1)

(m ⊗ m)⌊(P0 × P1)
)
 d(µ0 ⊗ µ1),

that is

Hp

(
µ0 ⊗ µ1 | e−B(x)−B(y)´

X×X e
−B(x)−B(y)d(m ⊗ m)⌊(P0 × P1)

(m ⊗ m)⌊(P0 × P1)
)

=

=
ˆ
X×X

log
(

dµ0

dm⌊P0

)
d(µ0 ⊗ µ1) +

ˆ
X×X

log
(

dµ1

dm⌊P1

)
d(µ0 ⊗ µ1)+

−
ˆ
X×X

log
(

e−B(x)−B(y)´
X×X e

−B(x)−B(y)

)
d(m ⊗ m)⌊(P0 × P1)d(µ0 ⊗ µ1) =

=
ˆ
X

log (ϱ0|P0) dµ0 +
ˆ
X

log (ϱ1|P1) dµ1 +
ˆ
X

Bdµ0 +
ˆ
X

Bdµ1+

+ log
(ˆ

X×X
e−B(x)−B(y)d(m ⊗ m)⌊(P0 × P1)

)
< +∞,

hence, using [2, Lemma 7.2],

H(µ0 ⊗ µ1 | R) =



4. PRIMAL SCHRÖDINGER PROBLEM 67

= Hp

(
µ0 ⊗ µ1 | e−B(x)−B(y)´

X×X e
−B(x)−B(y)d(m ⊗ m)⌊(P0 × P1)

(m ⊗ m)⌊(P0 × P1)
)

+

+
ˆ
X×X

log
d

(
e−B(x)−B(y)´

X×X e
−B(x)−B(y)d(m ⊗ m)⌊(P0 × P1)

(m ⊗ m)⌊(P0 × P1)
)

dR d(µ0 ⊗ µ1) =

= Hp

(
µ0 ⊗ µ1 | e−B(x)−B(y)´

X×X e
−B(x)−B(y)d(m ⊗ m)⌊(P0 × P1)

(m ⊗ m)⌊(P0 × P1)
)

+

+
ˆ
X×X

log
(

e−B(x)−B(y)´
X×X e

−B(x)−B(y)d(m ⊗ m)⌊(P0 × P1)

)
d(µ0 ⊗ µ1)+

+
ˆ
X×X

log
(

(m ⊗ m)⌊(P0 × P1)
dR

)
d(µ0 ⊗ µ1) < +∞.

For the second part of the statement, consider σ ∈ Γ(µ0, µ1) such that σ = (f ′ ⊗ g′)R
for some Borel functions f, g : X → [0,+∞[. Take ζ ∈ C∞

c (X). By the fact that
(p1)#((f ′ ⊗ g′)R) = µ0 = ϱ0m, (p1)#R = m and using Corollary (P.17),

ˆ
X

ζϱ0dm =
ˆ
X

ζdµ0 =
ˆ
X

ζd(p1)#((f ′ ⊗ g′)R) =

=
ˆ
X×X

ζ(x)d(f ′ ⊗ g′)R =
ˆ
X×X

ζ(x)f ′(x)g′(y)dR =

=
ˆ
X

ζ(x)f ′(x)
(ˆ

X

g′(y)dRx(y)
)
dm(x),

so ˆ
X

(
f ′(x)

(ˆ
X

g′(y)dRx(y)
)

− ϱ0(x)
)
ζ(x)dm(x) = 0

and by Du Bois-Reymond Lemma’s,

f ′(x)
(ˆ

X

g′(y)dRx(y)
)

= ϱ0(x) < +∞ m-a.e. x ∈ X.

In particular, f ′ vanishes m-a.e. in X \ P0. Since, by assumption, Rx ≥ cm in P1 for
m-a.e. x ∈ P0, taken a suitable x ∈ P0,

c∥g′∥L1(X,m) =
ˆ
X

g′d(cm) ≤
ˆ
X

g′dRx

so g′ ∈ L1(X,m) and

f ′(x) ≤
∥ϱ0∥L∞(X,m)´

X
g′dRx

≤
∥ϱ0∥L∞(X,m)

c∥g′∥L1(X,m)
.
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By the fact that f ′ vanish m-a.e. in X \ P0, we obtain

∥f ′∥L∞(X,m)∥g′∥L1(X,m) ≤
∥ϱ0∥L∞(X,m)

c
.

Using p2 in place of p1, we obtain also

∥f ′∥L1(X,m)∥g′∥L∞(X,m) ≤
∥ϱ1∥L∞(X,m)

c
.

In particular, log f ′ and log g′ are bounded from above.
By the fact that HR is well defined on Γ(µ0, µ1),

ˆ
X×X

(log f ′ ⊕ log g′)dσ = H(σ | R) > −∞

so log f ′ ◦ p1, log g′ ◦ p2 ∈ L1(X × X, σ). Now, as already done before, using also the
fact that γ and σ have the same marginals,

lim
λ→0+

H(σ + λ(γ − σ) | R) −H(σ | R)
λ

=
ˆ
X×X

(f ⊗ g − f ′ ⊗ g′) log f ′ ⊗ g′dR =

=
ˆ
X×X

(log f ′ ⊕ log g′)d(γ − σ) =

=
ˆ
X

log f ′d(p1)#(γ − σ)+

+
ˆ
X

log g′d(p2)#(γ − σ) = 0.

By convexity of HR, H(σ | R) ≤ H(γ | R) and the uniqueness of the minimizer for HR

provides σ = γ.

5 Comparison

We want now to analyze the connection between the static representations of the two
problems: the goal of the section is to emphasize, at least heuristically, the bond between
the two problems using their static representation formulas. What we can, preliminarily,
say is that both are interpolation problems defined as minimization problems of convex
functionals on the same convex domain. It is, however, possible to highlight a much
deeper connection between the two problems.

Consider a Polish space (X, d), m ∈ R+(X) and, for every ε > 0, Rε ∈ R+(X ×X)
such that (p1)#Rε = (p2)#Rε = m and m ⊗ m ≪ Rε ≪ m ⊗ m.
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Consider a Borel function c : X ×X → [0,+∞[ lower semicontinuous such that for
every x ∈ X the function {y 7−→ c(x, y)} is coercive. Suppose that for every x ∈ X,
{Rε}ε>0 satisfies a large deviation principle with rate function {y 7−→ c(x, y)}, namely
for every U,C ⊆ X, with U open and C closed,

lim inf
ε→0

ε log Rε(U) ≥ − inf
y∈U

c(x, y), lim sup
ε→0

ε log Rε(C) ≤ − inf
y∈C

c(x, y).

Fix µ ∈ P(X) such that µ ≪ m. Consider for every ν ∈ P(X) such that ν ≪ m and
such that there exists a Borel function B : X → [0,+∞[ such that
ˆ
X×X

e−B(x)−B(y)dR(x, y) < +∞,

ˆ
X

B(x)dµ0(x) < +∞,

ˆ
X

B(x)dµ1(x) < +∞,

the functionals
S(µ)
ε (ν) = inf {εHRε(π) : π ∈ Γ(µ, ν)}

and
T (µ)(ν) = inf {C(π) : π ∈ Γ(µ, ν)} .

It results
Γ − lim

ε→0
S(µ)
ε = T (µ),

that can be read as "optimal transport problem is the Γ-limit of Schrödinger problem".
In particular, the limit of the sequence of the solutions of (SP) is a solution of (OT). At
the moment, it is still quite a complex problem to understand which of the solutions
actually is: some works linked to this question are [21] and [4].

Let us analyze, at least intuitively, a specific example.

(1.30) Example Consider Rn, endowed with Euclidean distance. Given ε > 0, consider
R ε

2
= r ε

2
Ln ⊗ Ln, where

rt(x, y) = 1√
(4πt)n

e− |x−y|2
4t .

Given µ, ν ∈ P(X) such that µ, ν ≪ Ln, the choice B = 0 guarantees the well-definiteness
of HR ε

2
on Γ(µ, ν). A simple computation provides

HR ε
2
(σ) =

ˆ
log

(
dσ

R ε
2

)
dσ =

ˆ
log

(
dσ

d(µ⊗ ν)
d(µ⊗ ν)
d(Ln ⊗ Ln)

d(Ln ⊗ Ln)
dR ε

2

)
dσ =

=
ˆ

log
(

dσ

d(µ⊗ ν)

)
dσ +

ˆ
log

(
d(µ⊗ ν)
d(Ln ⊗ Ln)

)
dσ +

ˆ
log

(
d(Ln ⊗ Ln)

dR ε
2

)
dσ.
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Now, as regards the first term, we recognize
ˆ

log
(

dσ

d(µ⊗ ν)

)
dσ = H(σ|µ⊗ ν).

For the second term,
ˆ

log
(

d(µ⊗ ν)
d(Ln ⊗ Ln)

)
dσ =

ˆ
log

(
dµ

dLn
(x) dν

dLn
(y)
)
dσ(x, y) =

=
ˆ

log
(
dµ

dLn
(x)
)
dσ(x, y) +

ˆ
log

(
dν

dLn
(y)
)
dσ(x, y)

so, using the change of variables formula,
ˆ

log
(

d(µ⊗ ν)
d(Ln ⊗ Ln)

)
dσ =

ˆ
log

(
dµ

dLn

)
dµ+

ˆ
log

(
dν

dLn

)
dν = H(µ|Ln) +H(ν|Ln).

For the third term, observing that

Ln ⊗ Ln =
√

(2πε)ne
|x−y|2

2ε R ε
2
,

we can write
ˆ

log
(
d(Ln ⊗ Ln)

dR ε
2

)
dσ =

ˆ
log

(√
(2πε)ne

|x−y|2
2ε

)
dσ =

= n

2 log (2πε)σ(X ×X) + 1
2ε

ˆ
|x− y|2dσ(x, y) =

= n

2 log (πε) + 1
2εC(σ).

Resuming,

HR ε
2
(σ) = H(σ|µ⊗ ν) +H(µ|Ln) +H(ν|Ln) + n

2 log (2πε) + 1
2εC(σ)

and multiplying both sides by ε we get

εHR ε
2
(σ) = εH(π|µ⊗ ν) + εH(µ|Ln) + εH(ν|Ln) + n

2 ε log (2πε) + 1
2C(σ).

Passing to the limit as ε → 0, on the right-hand side we expect that only the last term
survives. This provides, at least intuitively, the Γ-limit mentioned above in the abstract
setting. As regards the pointwise limit, this latter is clear from the calculations we did.

To formalize the previous discussion, the interested reader has, first of all, to learn
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how to manage with Γ-convergence. Further details can be found in [39], [15] and [14].





Chapter 2

Dual representations

1 Kantorovich–Rubinstein duality

The Kantorovich problem is a convex constrained optimization problem, so it admits
a dual representation. Let us, first of all, understand in what sense with an example.

(2.1) Example Consider again the situation described in Example (1.5). If buying
and selling are handled by a broker, who buys at price φi from xi and sells to yj at ψj,
to be competitive with respect to the direct selling between mills and bakeries, he must be
sure that ψj − φi ≤ c(xi, yj). In this assumption, the broker is interested in maximizing
the profit, that is

m∑
j=1

ψjνj −
n∑
i=1

φiµi.

The abstract formulation is then the following.

(2.2) Definition Let (X, dX), (Y, dY ) be two metric spaces, µ ∈ P(X), ν ∈ P(Y ) and
a Borel function c : X×Y → [0,+∞[ called cost function. In the so-called dual optimal
transport problem we look for

sup
(φ,ψ)∈Ic

{ˆ
X

φdµ+
ˆ
Y

ψdν

}

where
Ic = {(φ, ψ) ∈ Lipb(X) × Lipb(Y ) : φ+ ψ ≤ c} .

We call Kantorovich potentials every maximizing couple of the above problem.

The aim of this section is to show the equivalence of primal and dual optimal
transport problems in a Polish setting with lower semicontinuous cost. The proof will
be based essentially on this Proposition.

73
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(2.3) Proposition Let (X, dX), (Y, dY ) be Polish spaces, µ ∈ P(X), ν ∈ P(Y ), a
continuous function c : X × Y → [0,+∞[ and π ∈ Γ(µ, ν) an optimal plan such that

ˆ
X×Y

cdπ < +∞.

Then supt(π) is c-cyclically monotone.

Proof. See [1, Theorem 3.17].

(2.4) Theorem (Kantorovich–Rubinstein duality) Let (X, dX), (Y, dY ) be Polish
spaces, µ ∈ P(X) and ν ∈ P(Y ). If c : X × Y → [0,+∞[ is lower semicontinuous, then

min
{
C(π) =

ˆ
X×Y

c(x, y)dπ(x, y) : π ∈ Γ(µ, ν)
}

= sup
(φ,ψ)∈Ic

{ˆ
X

φdµ+
ˆ
Y

ψdν

}
.

If, in addition, c ∈ Lipb(X × Y ), then the supremum is attained and Kantorovich
potentials are of the form (φ, φc) for some c-concave function φ.

Proof. First of all, by Theorem (1.14), there exists an optimal plan π0 ∈ Γ(µ, ν), namely

C(π0) = min
π∈Γ(µ,ν)

C(π).

Using the indicator function, we can rewrite the problem as

C(π0) = inf
π∈P(X×Y )

{ˆ
X×Y

cdπ + ιΓ(µ,ν)(π)
}
.

Consider the set

B = {(φ, ψ) : φ : X → R Borel, ψ : Y → R Borel} .

Let us prove that for every π ∈ P(X × Y )

ιΓ(µ,ν)(π) = sup
(φ,ψ)∈B

{ˆ
X

φdµ−
ˆ
X×Y

φdπ +
ˆ
Y

ψdν −
ˆ
X×Y

ψdπ

}
.

If π ∈ Γ(µ, ν), marginal conditions provide

sup
(φ,ψ)∈B

{ˆ
X

φdµ−
ˆ
X×Y

φdπ +
ˆ
Y

ψdν −
ˆ
X×Y

ψdπ

}
= 0.
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On the other hand, if π ∈ P(X × Y ) \ Γ(µ, ν), one of the marginal conditions fails.
Without loss of generality, we can think that (pX)#π ̸= µ so there exists B ∈ B(X)
such that (pX)#π(B) ̸= µ(B). If (pX)#π(B) < µ(B), let φn = nχB. It holds

ˆ
X

φndµ−
ˆ
X×Y

φndπ = n (µ(B) − π(B × Y )) = n(µ(B) − (pX)#π(B))

and, letting n → +∞,

sup
(φ,ψ)∈B

{ˆ
X

φdµ−
ˆ
X×Y

φdπ +
ˆ
Y

ψdν −
ˆ
X×Y

ψdπ

}
= +∞.

The case (pX)#π(B) > µ(B) is analogous: we just have to use φn = −nχB.

Now,

min
π∈Γ(µ,ν)

C(π) = inf
π∈P(X×Y )

{ˆ
X×Y

cdπ+

+ sup
(φ,ψ)∈B

{ˆ
X

φdµ−
ˆ
X×Y

φdπ +
ˆ
Y

ψdν −
ˆ
X×Y

ψdπ

}}
=

= inf
π∈P(X×Y )

sup
(φ,ψ)∈B

{ˆ
X×Y

(c− φ− ψ)dπ +
ˆ
X

φdµ+
ˆ
Y

ψdν

}
≥

≥ sup
(φ,ψ)∈B

inf
π∈P(X×Y )

{ˆ
X×Y

(c− φ− ψ)dπ +
ˆ
X

φdµ+
ˆ
Y

ψdν

}
≥

≥ sup
(φ,ψ)∈Ic

inf
π∈P(X×Y )

{ˆ
X×Y

(c− φ− ψ)dπ +
ˆ
X

φdµ+
ˆ
Y

ψdν

}

and, by the fact that c ≥ φ+ ψ in Ic, we obtain

min
π∈Γ(µ,ν)

C(π) ≥ sup
(φ,ψ)∈Ic

{ˆ
X

φdµ+
ˆ
Y

ψdν

}
.

In order to prove the converse inequality, let us consider firstly the case c ∈ Lipb(X×
Y ). By Proposition (2.3), supt(π0) is c-cyclically monotone and, like in Theorem (P.32),
fixed (x0, y0) ∈ supt(π), the function φ defined by

φ(x) = inf
n∈N\{0}

(x1,y1),...,(xn,yn)∈supt(π0)

(c(x, yn) − c(xn, yn) + c(xn, yn−1) − c(xn−1, yn−1) + · · · +

+c(x1, y0) − c(x0, y0))

is a c-concave Lipschitz and bounded from above function such that φ + φc = c and
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φ(x0) = 0. By the fact that

φc(y) ≤ c(x0, y) − φ(x0) ≤ sup c,

also φc is bounded from above. Now,

φ(x) = (φc)c(x) = inf
y∈Y

c(x, y) − φc(y) ≥ inf c− supφc

so φ is also bounded from below. Similarly, φc is bounded from below. Consequently, φ
and φc are bounded Lipschitz functions. Finally,

min
π∈Γ(µ,ν)

C(π) =
ˆ
X×Y

cdπ0 =
ˆ

supt(π0)
cdπ0 =

ˆ
supt(π0)

(φ+ φc)dπ0 =

=
ˆ

supt(π0)
φdπ0 +

ˆ
supt(π0)

φcdπ0 ≤ sup
(φ,ψ)∈Ic

{ˆ
X

φdµ+
ˆ
Y

ψdν

}
.

In particular, equality holds and (φ, φc) are Kantorovich potentials.

In the general case, consider (Inc), the inf-convolution of c. By the fact that
Inc ∈ Lipb(X × Y ) for every n ∈ N, using the previous case,

min
π∈Γ(µ,ν)

ˆ
X×Y

Incdπ = sup
(φ,ψ)∈IInc

{ˆ
X

φdµ+
ˆ
Y

ψdν

}
.

In particular, using the fact that Inc ≤ c,

(2.5) min
π∈Γ(µ,ν)

ˆ
X×Y

Incdπ ≤ sup
(φ,ψ)∈Ic

{ˆ
X

φdµ+
ˆ
Y

ψdν

}
.

Now, let (πn) in Γ(µ, ν) a sequence of optimal plans for (Inc). By Proposition (1.13),
up to a subsequence, πn ⇀ π for some π ∈ Γ(µ, ν). If m ∈ N and n ≥ m,

min
π∈Γ(µ,ν)

ˆ
X×Y

Incdπ =
ˆ
X×Y

Incdπn ≥
ˆ
X×Y

Imcdπn,

so passing to the lim inf as n → +∞, by Lemma (P.19),

lim inf
n

min
π∈Γ(µ,ν)

ˆ
X×Y

Incdπ ≥ lim inf
n

ˆ
X×Y

Imcdπn =
ˆ
X×Y

Imcdπ

and if m → +∞ we obtain, using the monotone convergence Theorem,

lim inf
n

min
π∈Γ(µ,ν)

ˆ
X×Y

Incdπ ≥ lim
m

ˆ
X×Y

Imcdπ =
ˆ
X×Y

cdπ ≥ min
π∈Γ(µ,ν)

C(π).
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By the fact that the right-hand side in (2.5) does not depend on n,

min
π∈Γ(µ,ν)

C(π) ≤ sup
(φ,ψ)∈Ic

{ˆ
X

φdµ+
ˆ
Y

ψdν

}

and the result follows.

(2.6) Remark Using Proposition (P.28), arguing in the same way as in the proof of
Kantorovich–Rubinstein duality, it is clear that

sup
(φ,ψ)∈Id

{ˆ
X

φdµ+
ˆ
Y

ψdν

}
= sup

f∈Lip(X),Lip(f)≤1

ˆ
X

fd(µ− ν).

2 Dual Schrödinger problem

The Schrödinger problem, like the optimal transport problem, is a convex constraint
optimization problem, so we can derive a dual representation.

(2.7) Definition Consider a Polish space (X, d), R ∈ R+(X ×X) and µ0, µ1 ∈ P(X).
Suppose there exists a Borel function B : X → [0,+∞[ such that
ˆ
X×X

e−B(x)−B(y)dR(x, y) < +∞,

ˆ
X

B(x)dµ0(x) < +∞,

ˆ
X

B(x)dµ1(x) < +∞.

In the so-called dual Schrödinger problem we look for

sup
{ˆ

X

φdµ0 +
ˆ
X

ψdµ1 − log
(ˆ

X×X
eφ⊕ψdR

)
: φ, ψ : X → R Borel,

ˆ
X×X
eφ⊕ψdR < +∞

}
.

Let us now show that the two formulations are in fact equivalent, as expected: we
prove this fact in the case H(µ0 ⊗ µ1 | R) < +∞ to have existence, uniqueness, and
the structural formula for the minimizer. The argument is completely based on Lemma
(1.24). A more general proof can be found in [40].

(2.8) Theorem Consider a Polish space (X, d), m ∈ R+(X) and R ∈ R+(X×X) such
that (p1)#R = (p2)#R = m and m ⊗ m ≪ R ≪ m ⊗ m. Let µ0 = ϱ0m, µ1 = ϱ1m ∈ P(X).
If there exists a Borel function B : X → [0,+∞[ such that
ˆ
X×X

e−B(x)−B(y)dR(x, y) < +∞,

ˆ
X

B(x)dµ0(x) < +∞,

ˆ
X

B(x)dµ1(x) < +∞
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and H(µ0 ⊗ µ1 | R) < +∞, then

min
π∈Γ(µ0,µ1)

HR(π) = max
{ˆ

X

φdµ0 +
ˆ
X

ψdµ1 − log
(ˆ

X×X
eφ⊕ψdR

)
:

φ, ψ : X → R Borel,
ˆ
X

eφ⊕ψdR < +∞
}
.

Proof. First of all, by Theorem (1.28), let γ = (f ⊗ g)R be the minimizer for HR on
Γ(µ0, µ1), for some f, g : X → [0,+∞[ Borel functions. In particular, φ = log f and
ψ = log g are Borel and

ˆ
X×X

eφ⊕ψdR =
ˆ
X×X

f ⊗ gdR = γ(X ×X) = 1 < +∞.

Now, by Lemma (1.24),

min
π∈Γ(µ0,µ1)

HR(π) = HR(γ) = sup
{ˆ

X

udγ − log
(ˆ

X×X
eudR

)
:

u : X ×X → R Borel,
ˆ
X

eudR < +∞
}

≥

≥ sup
{ˆ

X

φdµ0 +
ˆ
X

ψdµ1 − log
(ˆ

X×X
eφ⊕ψdR

)
:

φ, ψ : X → R Borel,
ˆ
X

eφ⊕ψdR < +∞
}

≥

≥
ˆ
X

log fdµ0 +
ˆ
X

log gdµ1 − log
(ˆ

X×X
elog f⊕log gdR

)
=

=
ˆ
X×X

log(f ⊗ g)dγ − log 1 =
ˆ
X×X

log(f ⊗ g)dγ =

= HR(γ) = min
π∈Γ(µ0,µ1)

HR(π),

so the supremum is a maximum and the result follows.



Chapter 3

The Wasserstein space (P2(X),W2)

1 Definition and initial properties

This chapter is mainly dedicated to the study of the metric space (P2(X),W2):
the name of this space is a problematic issue in the History of Mathematics because
Leonid Nisonovich Vaserstein, the mathematician from whom it takes its name, does
not provide an explicit definition of it. Moreover, he was only interested in the case
(P1(X),W1), which we do not care about. In the end, Wasserstein distances were
introduced, independently, several times throughout the last century: another possible
name is, indeed, Kantorovich–Rubinstein distance.

From this point on, we will always consider the square distance as cost in the optimal
transport problem. Let us start with the basic definition of the chapter.

(3.1) Definition Consider a Polish space (X, d) and the set

P2(X) =
{
µ ∈ P(X) :

ˆ
X

d2(x, x0)dµ(x) < +∞ for some (and thus for all) x0 ∈ X

}
,

we call Wasserstein distance on P2(X) the function W2 : P2(X) × P2(X) → R such that

W 2
2 (µ, ν) = min

π∈Γ(µ,ν)
C(π).

Since form and substance are different, we have to prove that W2 is well defined and,
actually, a distance on P2(X). We will use the following Lemma whose proof is based
on Corollary (P.17).

(3.2) Lemma (Dudley) Consider Polish spaces (X1, d1), (X2, d2), (X3, d3) and take
µ1 ∈ P(X1), µ2 ∈ P(X2), µ3 ∈ P(X3). If π12 ∈ Γ(µ1, µ2) and π23 ∈ Γ(µ2, µ3), then there

79
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exists π ∈ P(X1 ×X2 ×X3) such that

(p1,2)#π = π12, (p2,3)#π = π23.

Proof. By the fact that π12 ∈ Γ(µ1, µ2), we have that π12 ∈ P(X1 ×X2) and (p2)#π
12 =

µ2. By Corollary (P.17), for every A ∈ B(X1 ×X2)

π12(A) =
ˆ
X2

π12
x2(A)dµ2(x2).

Analogously, for every B ∈ B(X2 ×X3)

π23(B) =
ˆ
X3

π23
x2(B)dµ2(x2).

The measure π : B(X1 ×X2 ×X3) → [0, 1] such that

π(E) =
ˆ
X2

(π12
x2 , π

23
x2)(E)dµ2(x2)

has the required properties.

(3.3) Theorem If (X, d) is a Polish space, then (P2(X),W2) is a metric space.
In particular, the function E : X → Im(E) ⊆ P2(X) such that

E(x) = δx

is an isometry.

Proof. First of all, since µ⊗ ν ∈ Γ(µ, ν), given x0 ∈ X, by the fact that µ, ν ∈ P2(X),

W 2
2 (µ, ν) ≤ 2

ˆ
X

d2(x, x0)dµ(x) + 2
ˆ
X

d2(y, x0)dν(y) < +∞.

Now, by the symmetry of the Kantorovich problem and d, W2 is also symmetric and
clearly W2 ≥ 0. In particular,

W 2
2 (µ, µ) ≤

ˆ
X×X

d2(x, y)d(Id, Id)#µ(x, y) = 0,
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so W2(µ, µ) = 0. Conversely, if W2(µ, ν) = 0, given π an optimal plan, one has

0 = W 2
2 (µ, ν) =

ˆ
X×X

d2(x, y)dπ(x, y),

so d2(x, y) = 0 π-a.e. in X ×X, that is x = y π-a.e. in X ×X. What we obtain is that
for all bounded and Borel functions f

ˆ
X

f(x)dµ(x) =
ˆ
X×X

f(x)dπ(x, y) =
ˆ
X×X

f(y)dπ(x, y) =
ˆ
X

f(y)dν(y),

so µ = ν.

Let us now prove the triangle inequality. Let us consider µ, ν, σ ∈ P2(X) and
X1 = X2 = X3 = X. Initially, µ ∈ P(X1), ν ∈ P(X2), σ ∈ P(X3), so for every
π12 ∈ Γ(µ, ν) optimal and π23 ∈ Γ(ν, σ) optimal, by Dudley’s Lemma, there exists
π ∈ P(X1 ×X2 ×X3) such that

(p1,2)#π = π12, (p2,3)#π = π23.

In particular,

(p1)#π = µ, (p3)#π = σ,

so (p1,2)#π ∈ Γ(µ, σ) and

W2(µ, σ) ≤

√√√√ˆ
X×X

d2(x1, x3)d(p1,3)#π(x1, x3).

Viewing d2(x1, x3) as a function of x1, x2 and x3 not depending on x2, using the change
of variables formula one has

W2(µ, σ) ≤

√√√√ˆ
X×X×X

d2(x1, x3)dπ(x1, x2, x3),

so by monotonicity of the function {t 7→ t2, t ≥ 0}, the integral and the square root,
using the triangle inequality of d, one has

W2(µ, σ) ≤

√√√√ˆ
X×X×X

(d(x1, x2) + d(x2, x3))2dπ(x1, x2, x2).

Finally, viewing d(x1, x2) as a function of x1, x2 and x3 not depending on x3, d(x2, x3)
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as a function of x1, x2 and x3 not depending on x1 and using the triangle inequality of
Lebesgue norms, we arrive at

W2(µ, σ) ≤

√√√√ˆ
X×X×X

d2(x1, x2)dπ(x1, x2, x3) +
√√√√ˆ

X×X×X
d2(x2, x3)dπ(x1, x2, x3)

and using again the change of variables formula

W2(µ, σ) ≤

√√√√ˆ
X×X

d2(x1, x2)dπ12(x1, x2) +
√√√√ˆ

X×X
d2(x2, x3)dπ23(x2, x3).

The desired conclusion follows by the optimality of π12 and π23.
Let us now prove that the function E : X → Im(E) ⊆ P2(X) such that

E(x) = δx

is an isometry. Clearly it is well defined and bijective. Consider now x, y ∈ X. Let us
prove that Γ(δx, δy) = {δx × δy}. By contradiction, if not, then there exists π ∈ Γ(δx, δy)
such that π ̸= δx ⊗ δy = δ(x,y). In particular, there exists (x′, y′) ̸= (x, y) such that
(x′, y′) ∈ supt(π). Let us consider r > 0 such that x /∈ B(x′, r) and φ ∈ Cb(X) such that
φ ≥ 0, φ(x′) > 0 and supt(φ) ⊆ B(x′, r). One has,

0 = φ(x) =
ˆ
X

φdδx =
ˆ
X

φd(pX)#π =
ˆ

B(x′,r)
φd(pX)#π > 0

that is a contradiction. In conclusion, W2(δx, δy) = d(x, y), so E is an isometry.

2 Geometrical analysis of (P2(X),W2)

We would now like to study some geometric properties of Wasserstein spaces. To do
this, we first need a generalization of Dudley’s Lemma.

(3.4) Lemma (iterated Dudley) Given N ∈ N ∪ {+∞} such that N ≥ 3, (Xn, dn)
Polish spaces and µn ∈ P(Xn) for 1 ≤ n ≤ N . If ϑn ∈ Γ(µn−1, µn) for 2 ≤ n ≤ N , there
exist πn ∈ P(X1 × · · · ×Xn), for 1 ≤ n ≤ N such that the following facts hold true:

(a) p1,...,n−1
# πn = πn−1 for 2 ≤ n ≤ N ,

(b) pi#πn = µi for 1 ≤ i ≤ n ≤ N ,

(c) pi−1,i
# πn = ϑi for 2 ≤ i ≤ n ≤ N .
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Proof. The case N = 3 follows by Dudley’s Lemma. In general, for N finite, we only
have to repeatedly apply Dudley’s Lemma to

X1 × · · · ×Xn = Z1 × Z2 × Z3

where Z1 = X1 × · · · × Xn−2, Z2 = Xn−1, Z3 = Xn, πn−1 ∈ P(Z1 × Z2) and ϑ ∈
Γ(µn−1, µn) ⊆ P(Z2 × Z3).

The case N = +∞ follows from Kolmogorov’s Theorem.

Let us start with uniform properties of (P2(X),W2): we are, in particular, interested
in completeness. The proof will be based on the fact that, given a measure space
(E,U , µ), with µ finite, the metric space Lp(E,U , µ;X) is complete whenever (X, d) is
complete. Since we want to talk about completeness, to be consistent, let us remember
that the set (in general is not a vector space)

Lp(E,U , µ;X) =
{
f ∈ M(E, µ;X) :

ˆ
E

dp(f(x), z0)dµ(x) < +∞,

for some (and thus all) z0 ∈ X

}

is endowed with the distance (ˆ
E

dp(f, g)dµ
) 1

p

.

(3.5) Theorem Consider a Polish space (X, d). (P2(X),W2) is complete.

Proof. Let (µn) be a Cauchy sequence in (P2(X),W2). By the Cauchy property of (µn),
up to a subsequence, we can assume

∞∑
n=0

W2(µn, µn+1) < +∞.

Now, let us consider π∞ ∈ P(∏∞
n=0 Xn) in accordance with iterated Dudley’s Lemma,

applied to (µn) and (Xn) = (X).
Observing that
ˆ

∞∏
n=0

Xn

d2(pn, pn+1)dπ∞ =
ˆ

∞∏
n=0

Xn

d2(xn, xn+1)d(pn, pn+1)#π∞ = W 2
2 (µn, µn+1),

we deduce that the sequence of projections (pn) is Cauchy in L2(∏∞
n=0 Xn,

∏∞
n=0 Bn, π∞;X).

Thanks to the completeness of L2(∏∞
n=0 Xn,

∏∞
n=0 Bn, π∞;X), (pn) converges to some p
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in L2(∏∞
n=0 Xn,

∏∞
n=0 Bn, π∞, X). Defining

µ∞ = (p)#π∞,

we have
W 2

2 (µn, µ∞) ≤
ˆ
∏∞

n=0 Xn

d2(pn, p)dπ∞ → 0,

so µn → µ∞ and the proof is concluded.

We now want to move on and analyze more topological properties of (P2(X),W2),
in particular, compactness and separability. Since W2 convergence is not particularly
easy to handle, let us look at an equivalent condition.

(3.6) Theorem Consider a Polish space (X, d). Let (µn) in P2(X) and µ ∈ P2(X).
The following facts are equivalent:

(a) µn → µ in (P2(X),W2),

(b) µn ⇀ µ and for some (and thus all) x0 ∈ X one has

lim
n

ˆ
X

d2(x0, x)dµn(x) =
ˆ
X

d2(x0, x)dµ(x).

Proof.
(a) =⇒ (b) Fix x0 ∈ X. Let us start proving that if ν ∈ P2(X), then Γ(δx0 , ν) =
{δx0 ⊗ ν}. By contradiction, if there exists π ∈ Γ(δx0 , ν) such that π ̸= δx0 ⊗ ν, then
there also exists x′ ∈ X such that for all y ∈ X one has (x′, y) ∈ supt(π). Let us
consider r > 0 such that x0 /∈ B(x′, r) and φ ∈ Cb(X) such that φ ≥ 0, φ(x′) > 0 and
supt(φ) ⊆ B(x′, r). One has,

0 = φ(x0) =
ˆ
X

φdδx0 =
ˆ
X

φd(p1)#π =
ˆ

B(x′,r)
φd(p1)#π > 0

that is a contradiction.
Using the above result, we can write

∣∣∣∣∣
√ˆ

X

d2(x, x0)dµn(x) −
√ˆ

X

d2(x, x0)dµ(x)
∣∣∣∣∣ = |W2(δx0 , µn) −W2(δx0 , µ)|

and, using the triangle inequality, one has
∣∣∣∣∣
√ˆ

X

d2(x, x0)dµn(x) −
√ˆ

X

d2(x, x0)dµ(x)
∣∣∣∣∣ ≤ W2(µn, µ).
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We can therefore conclude that

lim
n

ˆ
X

d2(x0, x)dµn(x) =
ˆ
X

d2(x0, x)dµ(x).

Let us now consider f ∈ Lipb(X) and πn ∈ Γ(µn, µ) optimal. One has,

lim sup
n

∣∣∣∣∣
ˆ
X

f(x)dµn(x) −
ˆ
X

f(y)dµ(y)
∣∣∣∣∣ =

= lim sup
n

∣∣∣∣∣
ˆ
X×X

f(x)dπn(x, y) −
ˆ
X×X

f(y)dπn(x, y)
∣∣∣∣∣ ≤

≤ Lip(f)lim sup
n

ˆ
X×X

d(x, y)dπn(x, y).

Using Hölder’s inequality and remembering that πn ∈ P(X ×X) we obtain

lim sup
n

∣∣∣∣∣
ˆ
X

f(x)dµn(x) −
ˆ
X

f(y)dµ(y)
∣∣∣∣∣ ≤ Lip(f)lim sup

n
W2(µn, µ) = 0.

The result follows by Lemma (P.19).

(b) =⇒ (a) Let us consider firstly the case when (X, d) is compact, so totally bounded,
so bounded. Fixed z ∈ X and consider the closed subset of C(X)

Z = {f ∈ Lip(X) : Lip(f) ≤ 1, f(z) = 0} .

Let us observe that if f ∈ Z

|f(x)| = |f(x) − f(z)| ≤ Lip(f)d(x, z) ≤ diam(X),

so max|f | ≤ diam(X) and f ∈ Lipb(X). If (fh) in Z, for every h ∈ N

∥fh∥∞ = max fh ≤ diam(X),

so (fh) is bounded in (C(X), ∥ ∥∞). Fixed ε > 0, given any δ > 0 such that δ < ε, for
every h ∈ N, if x, y ∈ X such that d(x, y) < δ, then

|fh(x) − fh(y)| ≤ d(x, y) < δ < ε,

so (fh) is also equi-uniformly continuous. By Ascoli–Arzelà’s Theorem, there exists (fhk
)

converging in (C(X), ∥ ∥∞)). Being Z closed, (fhk
) also converges in Z. Therefore Z is

compact.
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Let us define, for every f ∈ Z,

Ln(f) =
ˆ
X

fdµn, L(f) =
ˆ
X

fdµ.

Fixed ε > 0, by the fact that µn ⇀ µ, using Lemma (P.19), there exists h̄ ∈ N such that
for every h ≥ h̄ ∣∣∣∣∣

ˆ
X

fdµn −
ˆ
X

fdµ

∣∣∣∣∣ < ε,

so, being uniformly bounded, Ln → L uniformly in Z. By translation invariance, we
have

sup
Lip(f)≤1

(ˆ
X

fd(µn − µ)
)

= sup
f∈Z

(ˆ
X

fd(µn − µ)
)

→ 0.

Now, using Remark (2.6) and Kantorovich–Rubinstein duality, we deduce the existence
of πn ∈ Γ(µn, µ) optimal for d such that

lim
n

ˆ
X×X

ddπn = 0.

Being X compact, d is bounded, so there exists C ∈ R such that d ≤ C. Furthermore,
observing that
ˆ
X×X

d2dπn =
ˆ

(X×X)∩{d≤1}
d2dπn +

ˆ
(X×X)∩{1<d≤C}

d2dπn ≤

≤
ˆ

(X×X)∩{d≤1}
ddπn + C

ˆ
(X×X)∩{1<d≤C}

ddπn ≤ (1 + C)
ˆ
X×X

ddπn,

we have
W 2

2 (µn, µ) ≤
ˆ
X×X

d2dπn ≤ (1 + C)
ˆ
X×X

ddπn

and passing to the limit as n → +∞ we have µn → µ in (P2(X),W2).

In the general case, fixed x0 ∈ X, consider (σn) in P(X) and σ ∈ P(X) such that
for every B ∈ B(X)

σn(B) = 1
Zn

ˆ
B

(1 + d2(x0, x))dµn(x), σ(B) = 1
Z

ˆ
B

(1 + d2(x0, x))dµ(x)

where
Zn =

ˆ
X

(1 + d2(x0, x))dµn(x), Z =
ˆ
X

(1 + d2(x0, x))dµ(x).

Clearly, by (b),
lim
n
Zn = Z
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and, by Lemma (P.20), for every A ⊆ X open

lim inf
n

ˆ
A

d2(x0, x)dµn(x) = lim inf
n

ˆ
X

d2(x0, x)χA(x)dµn(x) ≥

≥
ˆ
X

d2(x0, x)χA(x)dµ(x) =
ˆ
A

d2(x0, x)dµ(x).

Combining these two facts with Lemma (P.21), we obtain that for every A ⊆ X open

lim inf
n

σn(A) = lim inf
n

1
Zn

ˆ
A

(1 + d2(x0, x))dµn(x) =

= 1
Z

lim inf
n

ˆ
A

(1 + d2(x0, x))dµn(x) ≥

≥ 1
Z

[
lim inf

n
µn(A) + lim inf

n

ˆ
A

d2(x0, x)dµn(x)
]

≥ σ(A),

then, applying again Lemma (P.21), σn ⇀ σ.

Now, by Prokhorov’s Theorem applied to the set {σn : n ∈ N}, there exists an
increasing sequence (Kk) of compact subsets of X such that x0 ∈ K0 and

lim
k

sup
n
σn(X \Kk) = 0.

Now
Znσn(X \Kk) ≥

ˆ
X\Kk

d2(x0, x)dµn(x),

so
lim
k

sup
n

ˆ
X\Kk

d2(x0, x)dµn(x) = 0.

If we define µn,k = µn⌊Kk + (1 − µn(Kk))δx0 ∈ P(Kk), fixing k ∈ N, we have

µn,k ⇀ νk = µ⌊Kk + (1 − µ(Kk))δx0 .

Using a diagonal argument, being in a compact, we can find (µnj ,k) such that for every
k ∈ N, (µnj ,k) converges in (P2(Kk),W2). Up to interpreting (µnj ,k) as a sequence in
P2(X) of measures with support in Kk, we obtain, for fixed k ∈ N, that (µnj ,k) converges
in (P2(X),W2).

Considering now πn,k ∈ P(X ×X) such that

πn,k = (Id, Id)#µn⌊Kk + (Id, f)#µn,
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where f : X → X such that f(x) = x0, we have, for every B ∈ B(X),

(p1)#πn,k(B) = πn,k((p1)−1(B)) = πn,k(B ×X) =
= (Id, Id)#µn⌊Kk(B ×X) + (Id, f)#µn⌊(X \Kk)(B ×X) =
= µn⌊Kk((Id, Id)−1(B ×X)) + µn⌊(X \Kk)((Id, f)−1(B ×X)) =
= µn⌊Kk(B) + µn⌊(X \Kk)(B) = µn(B)

and

(p2)#πn,k(B) = πn,k((p2)−1(B)) = πn,k(X ×B) =
= (Id, Id)#µn⌊Kk(X ×B) + (Id, f)#µn⌊(X \Kk)(X ×B) =
= µn⌊Kk((Id, Id)−1(X ×B)) + µn⌊(X \Kk)((Id, f)−1(B ×X)) =
= µn⌊Kk(B) + µn⌊(X \Kk)(X)δx0(B) =
= µn⌊Kk(B) + (1 − µn(X \Kk)δx0(B).

Resuming,
(p1)#πn,k = µn, (p2)#πn,k = µn,k,

so πn,k ∈ Γ(µn, µkn) and

W 2
2 (µn, µn,k) ≤

ˆ
X×X

d2(x, y)dπn,k(x, y) =

=
ˆ
X×X

d2(x, y)d(Id, Id)#µn⌊Kk(x, y) +
ˆ
X×X

d2(x, y)d(Id, f)#µn(x, y) =

=
ˆ
X

(d2 ◦ (Id, Id))(x)dµn⌊Kk(x) +
ˆ
X

(d2 ◦ (Id, f))(x)dµn⌊Kk(x) =

=
ˆ
X

d2(x, x)χKk
dµn(x) +

ˆ
X

d2(x, x0)χX\Kk
dµn(x) =

=
ˆ
X\Kk

d2(x, x0)dµn(x).

Now, let us prove that the sequence (µnj
) is Cauchy in (P2(X),W2). Fixed ε > 0,

by the fact that (µnj ,k) converges in (P2(X),W2) for any k ∈ N, then it is Cauchy. In
particular, for every k ∈ N there exists n(k) ∈ N such that for every nj, nl ≥ n(k)

W 2
2 (µnj ,k, µnl,k) <

ε2

8 ,
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then, by the triangle inequality,

W 2
2 (µnj

, µnl
) ≤ 4W 2

2 (µnj
, µnj ,k) + 4W 2

2 (µnj ,k, µnl,k) + 4W 2
2 (µnl,k, µnl

) ≤

≤ 8sup
n
W 2

2 (µn, µn,k) + 4W 2
2 (µnj ,k, µnl,k) <

< 8sup
n

ˆ
X\Kk

d2(x, x0)dµn(x) + ε2

2 .

If we choose k ∈ N such that

sup
n

ˆ
X\Kk

d2(x, x0)dµn(x) < ε2

16 ,

then for every nj, nl ≥ n(k)
W 2

2 (µnj
, µnl

) < ε2

as required. By the completeness of (P2(X),W2), it follows that (µnj
) converges in

(P2(X),W2). We can show that µnj
→ µ in (P2(X),W2). Indeed, let ν ∈ P2(X) such

that µnj
→ ν in (P2(X),W2). Using the first implication, µnj

⇀ ν, but since µn ⇀ µ,
then µnj

⇀ µ and the uniqueness of the weak limit provides µ = ν.
We have therefore exhibited a subsequence of (µn) that converges to µ in (P2(X),W2).

Repeating the argument for every subsequence of (µn) in place of (µn), we obtain µn → µ

in (P2(X),W2).

As for the compactness, the proof is essentially based on the combination of the
weak compactness of P(X) with the characterization of W2 convergence that we have
proved.

(3.7) Corollary Consider a Polish space (X, d). If (X, d) is compact, then (P2(X),W2)
is compact as well.

Proof. First of all, by Theorem (P.22), P(X) is weakly compact. Now, compactness of
(X, d) implies that (X, d) is totally bounded, hence bounded. In particular, P2(X) =
P(X) because if µ ∈ P(X) for every x0 ∈ X

ˆ
X

d2(x, x0)dµ(x) ≤ diam2(X) < +∞.

Combining this with Theorem (3.6) the result follows.

With regards to separability, we, more or less directly, trace back to the useful
characterization of W2 convergence that we have given before.



90 CHAPTER 3. THE WASSERSTEIN SPACE (P2(X),W2)

(3.8) Corollary Consider a Polish space (X, d). (P2(X),W2) is separable.

Proof. First of all, by separability of (X, d), there exists D ⊆ X at most countable such
that D = X. Consider, now, the sets

D =
{
σ ∈ P2(X) : σ =

n∑
i=0

qiδxi
, xi ∈ D, qi ∈ Q+, n ∈ N

}

and
Z =

{
σ ∈ P2(X) : σ =

∞∑
i=0

tiδxi
, xi ∈ X, ti ∈ R+

}
.

We have Z ⊆ D. Let us prove that if µ ∈ P2(X) has bounded support, then µ ∈ D.
By the fact that µ has bounded support, there exist x0 ∈ X and r > 0 such that
supt(µ) ∈ B(x0, r). Now, for any h ∈ N \ {0} let us consider

(
A

(h)
i

)
a Borel partition of

B(x0, r) such that diam
(
A

(h)
i

)
≤ 1

h
. Defining

µh =
∞∑
i=0

µ
(
A

(h)
i

)
δ
x

(h)
i
,

where x(h)
i ∈ A

(h)
i , if f ∈ Lipb(X), one has

∣∣∣∣∣
ˆ
A

(h)
i

fdµ− µ
(
A

(h)
i

)ˆ
A

(h)
i

fdδ
x

(h)
i

∣∣∣∣∣ =
∣∣∣∣∣
ˆ
A

(h)
i

fdµ− µ
(
A

(h)
i

)
f(x(h)

i )
∣∣∣∣∣ ≤

≤
ˆ
A

(h)
i

∣∣∣f(x) − f
(
x

(h)
i

)∣∣∣dµ(x) ≤

≤ Lip(f)
ˆ
A

(h)
i

d(x, x(h)
i )dµ(x) ≤ 1

h
µ
(
A

(h)
i

)
Lip(f),

so ∣∣∣∣∣
ˆ
X

fdµ−
ˆ
X

fdµh

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
i=0

ˆ
A

(h)
i

fdµ−
∞∑
i=0

µ
(
A

(h)
i

)ˆ
A

(h)
i

fdδ
x

(h)
i

∣∣∣∣∣ ≤

≤
∞∑
i=0

∣∣∣∣∣
ˆ
A

(h)
i

fdµ− µ
(
A

(h)
i

) ˆ
A

(h)
i

fdδ
x

(h)
i

∣∣∣∣∣ ≤

≤ 1
h

Lip(f)
∞∑
i=0

µ
(
A

(h)
i

)
= 1
h

Lip(f)µ(B(x0, r)).

Thanks to Lemma (P.19), we obtain µn ⇀ µ. Now, analogously
∣∣∣∣∣
ˆ
X

d2(x(h)
i , x)dµ(x) −

ˆ
X

d2(x(h)
i , x)dµh(x)

∣∣∣∣∣ ≤
∞∑
i=0

ˆ
A

(h)
i

∣∣∣d2(x(h)
i , x) − d2(x(h)

i , x
(h)
i )

∣∣∣dµ(x)
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therefore ∣∣∣∣∣
ˆ
X

d2(x(h)
i , x)dµ(x) −

ˆ
X

d2(x(h)
i , x)dµh(x)

∣∣∣∣∣ ≤ 1
h2µ(B(x0, r)),

so, by Theorem (3.6), we obtain µh → µ in (P2(X),W2). Observing that (µh) in Z, it
follows that µ ∈ D.

In the general case of µ ∈ P2(X), given x̄ ∈ supt(µ) and R > 0, if we consider the
measure

µR = 1
µ(B(x̄, R))µ⌊B(x̄, R),

one has that the support of µR is bounded and, if R → +∞, µR → µ in (P2(X),W2),
thanks to Theorem (3.6). Combining the case with bounded support and the previous
approximation, the result follows.

(3.9) Remark Combining Theorem (3.5) and Corollary (3.8), we understand that
whenever (X, d) is Polish, then (P2(X),W2) is Polish as well.

For further details about Wasserstein spaces, the interested reader may refer to [64]
and [3].

We conclude the section with some results due to Brenier and Knott–Smith. We
omit the proof, but the interested reader can find further details in [1], [37] or [8]. We
just underline that absolute continuity with respect to Ln assumption is required to
avoid atomic behavior that would ill pose Monge’s problem.

(3.10) Theorem Consider µ, ν ∈ P2(Rn), with µ ≪ Ln. The following facts hold true:

(a) there exists a unique minimizer π for the problem

min
{ˆ

R2n

1
2 |x− y|2dπ(x, y) : π ∈ Γ(µ, ν)

}
,

(b) there exists a unique, up to µ0-negligible sets, minimizer T for the problem

min
{ˆ

Rn

1
2 |x− T (x)|2dµ(x) : T : Rn → Rn Borel, T#µ = ν

}
,

(c) π is induced by T ,

(d) there exists a function ψ : Rn → ]−∞,+∞] convex, lower semicontinuous and µ-a.e.
differentiable in Rn such that

T = Dψ.
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Proof. See [1, Theorem 5.2].

(3.11) Theorem Consider µ ∈ P2(Rn), with µ ≪ Ln. If there exists a function
ψ : Rn → ]−∞,+∞] convex, lower semicontinuous and µ-a.e. differentiable in Rn, then

T = Dψ,

is the unique, up to µ0-negligible sets, minimizer for the problem

min
{ˆ

Rn

1
2 |x− T (x)|2dµ(x) : T : Rn → Rn Borel, T#µ = ν

}
.

Proof. See [1, Theorem 5.2].

(3.12) Theorem Consider µ, ν ∈ P2(Rn), with µ, ν ≪ Ln. If T µ→ν is the unique, up
to µ-negligible sets, minimizer for the problem

min
{ˆ

Rn

1
2 |x− T (x)|2dµ(x) : T : Rn → Rn Borel, T#µ = ν

}

and T ν→µ is the unique, up to ν-negligible sets, minimizer for the problem

min
{ˆ

Rn

1
2 |x− T (x)|2dν(x) : T : Rn → Rn Borel, T#ν = µ

}
,

then
T ν→µ ◦ T µ→ν = Id

µ-a.e. in Rn and
T µ→ν ◦ T ν→µ = Id

ν-a.e. in Rn.

Proof. See [1, Theorem 5.2].



Chapter 4

Dynamical representations

From now on, we will consider, as an environment, Rn equipped with the Euclidean
distance and we will deal only with the case µ, ν ∈ P2(Rn), to have W2(µ, ν) well defined.

1 Dynamic optimal transport

So far, to talk about the Kantorovich problem, we have always paid attention to the
initial and final configurations of mass, or at most on the intermediary that carries out
the transport. With the dynamic representation we want to propose in this section, we
are instead going to focus our attention on the path that the mass will have to follow
to move from the initial configuration to the final one. In this way, by increasing the
level of abstraction to formulate the problem, we will instead recover its most intrinsic
meaning. Let us analyze a short example.

(4.1) Example Consider x, y ∈ Rn and δx, δy ∈ P2(Rn). As we have already seen,
the only optimal plan is δx ⊗ δy. As for the path that the mass must travel, we have to
consider the geodesic connecting x and y, namely

γ(t) = ty + (1 − t)x.

x

y
γ

Figure 4.1: The path of a Dirac mass between x and y.

Let us proceed, then, by formalizing what we saw in the previous Example.

93
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(4.2) Definition Let µ, ν ∈ P2(Rn). In the so-called dynamic optimal transport
problem we look for

inf
{ˆ

C([0,1];Rn)
A2(γ)dη(γ) : η ∈ P(C([0, 1];Rn)), (e0)#η = µ, (e1)#η = ν

}
.

In particular, we will refer to any admissible η as a dynamic transport plan and any
optimal η as a optimal geodesic plan. We will denote with OptGeo(µ, ν) the set of
optimal geodesic plans from µ to ν.

We want now to prove that the dynamic formulation of the optimal transport problem
is equivalent to Kantorovich’s one: fundamental will be the fact that fixed x, y ∈ Rn,
there exists a unique γ ∈ Geo(Rn) connecting them.

(4.3) Theorem Let µ, ν ∈ P2(Rn). It results

min
π∈Γ(µ,ν)

C(π) = min
{ˆ

C([0,1];Rn)
A2(γ)dη(γ) : η ∈ P(C([0, 1];Rn)), (e0)#η = µ, (e1)#η = ν

}
.

Proof. First of all, if γ ∈ AC([0, 1];Rn), by Hölder’s inequality,

ˆ 1

0
|γ′|dL1 ≤

(ˆ 1

0
|γ′|2dL1

) 1
2

and, by the definition of an absolutely continuous curve and Theorem (P.35),

|γ(1) − γ(0)| ≤
ˆ 1

0
|γ′|dL1,

so
|γ(1) − γ(0)|2 ≤

ˆ 1

0
|γ′|2dL1.

Now, if η is a dynamic transport plan
ˆ
C([0,1];Rn)

A2(γ)dη(γ) ≥
ˆ
AC([0,1];Rn)

A2(γ)dη(γ) ≥
ˆ
AC([0,1];Rn)

ˆ 1

0
|γ′|2dL1dη(γ) ≥

≥
ˆ
AC([0,1];Rn)

|γ(1) − γ(0)|2dη(γ) =
ˆ
AC([0,1];Rn)

|e1(γ) − e0(γ)|2dη(γ) =

=
ˆ

|x− y|2d(e0, e1)#η(x, y).

Observing that p1
# ◦ (e0, e1)# = (p1 ◦ (e0, e1))# = (e0)# (resp. p2

# ◦ (e0, e1)# = (e1)#),
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we can affirm that (e0, e1)#η ∈ Γ(µ, ν), so
ˆ
C([0,1];Rn)

A2(γ)dη(γ) ≥ min
π∈Γ(µ,ν)

C(π).

In particular,

min
π∈Γ(µ,ν)

C(π) ≤ min
{ˆ

C([0,1];Rn)
A2(γ)dη(γ) : η ∈ P(C([0, 1];Rn)), (e0)#η = µ, (e1)#η = ν

}
.

Consider now π ∈ Γ(µ, ν) optimal. For any (x, y) ∈ Rn×Rn choose γx,y : [0, 1] → Rn

such that γx,y(t) = ty + (1 − t)x. Define the function Φ : Rn × Rn → Geo(Rn) such that

Φ(x, y) = γx,y

and the measure η′ = Φ#π ∈ P(C([0, 1];Rn)) which is, by construction, supported in
Geo(Rn). Using Lemma (P.51), we can write

min
π∈Γ(µ,ν)

C(π) =
ˆ

|x− y|2dπ(x, y) =
ˆ

Geo(Rn)
|γ(1) − γ(0)|2dη′(γ) =

ˆ
Geo(Rn)

A2(γ)dη′(γ)

so

min
π∈Γ(µ,ν)

C(π) ≥ min
{ˆ

C([0,1];Rn)
A2(γ)dη(γ) : η ∈ P(C([0, 1];Rn)), (e0)#η = µ, (e1)#η = ν

}
.

and the proof is concluded.

(4.4) Corollary Let µ, ν ∈ P2(Rn). The following facts are equivalent:

(a) η ∈ OptGeo(µ, ν),

(b) supt(η) ⊆ Geo(Rn) and (e0, e1)#η ∈ Γ(µ, ν) is optimal.

Proof. It is a direct consequence of Theorem (4.3).

Thanks to this new characterization of the optimal transport problem, we can prove
another geometric property of (P2(Rn),W2).

(4.5) Theorem (P2(Rn),W2) is geodesic.

Proof. Fix µ, ν ∈ P2(Rn). By Theorem (4.3), there exists η ∈ OptGeo(µ, ν) such that

W 2
2 (µ, ν) =

ˆ
Geo(Rn)

A2(γ)dη(γ).
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Consider µt = (et)#η. Clearly µ0 = µ, µ1 = ν, and using Lemma (P.51) and the
characterization of Geo(Rn), for every s, t ∈ [0, 1] we have

|s− t|2W 2
2 (µ, ν) = |s− t|2

ˆ
Geo(Rn)

|γ(1) − γ(0)|2dη(γ) =
ˆ

Geo(Rn)
|γ(s) − γ(t)|2dη(γ) =

=
ˆ
C([0,1];Rn)

|γ(s) − γ(t)|dη(γ) =
ˆ

|x− y|2d(es, et)#η(x, y).

Since (es, et)#η ∈ Γ(µs, µt), we obtain the inequality

|s− t|2W 2
2 (µ.ν) ≥ W 2

2 (µs, µt).

By the characterization of Geo(P2(Rn)), µt ∈ Geo(P2(Rn)), and the result follows.

It is interesting to point out that every constant speed geodesic can be lifted to an
optimal geodesic plan between its extrema.

(4.6) Theorem Every µt ∈ Geo(P2(Rn)) has a lifting η ∈ OptGeo(µ0, µ1).

Proof. Consider µt ∈ Geo(P2(Rn)). Let N ∈ N be such that N ≥ 3 and take, for every
i = 1, . . . , N , ϑi ∈ Γ(µ i−1

N
, µ i

N
) optimal. By Iterated Dudley’s Lemma, there exists

πN ∈ P((Rn)N+1) such that for every i = 1, . . . , N

pi−1,i
# πN = ϑi.

For every i = 1, . . . , N , consider Φi : Rn × Rn → Geo(Rn) ϑi-measurable such that

Φi(x, y) = γx,y

where γx,y : [0, 1] → Rn is such that γx,y(t) = ty + (1 − t)x. Define the function
ΦN : (Rn)N+1 → C([0, 1];Rn) such that for every i = 1, . . . , N

ΦN(x0, . . . , xN)|[ i−1
N
, i

N ] = xi−1 + (xi − xi−1)
(
N
(
t− i− 1

N

))
.

x0

x1

x2

xN
. . .

Figure 4.2: A piecewise geodesic connecting N + 1 points.
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Consider now ηN = (ΦN)#πN ∈ P(C([0, 1];Rn)),
ˆ
C([0,1];Rn)

A2dηN =
ˆ
C([0,1];Rn)

A2d(ΦN)#πN(γ) =
ˆ

A2 ◦ ΦNdπN =

=
ˆ ˆ 1

0
|(ΦN)′|2dL1dπN =

ˆ N∑
i=1

ˆ i
N

i−1
N

|(ΦN)′|dL1dπN =

= N2
N∑
i=1

ˆ ˆ i
N

i−1
N

|xi − xi−1|2dL1

 dπN(x0, . . . , xN).

Using the change of variables s = N
(
t− i−1

N

)
, we obtain

ˆ
C([0,1];Rn)

A2dηN = N
N∑
i=1

ˆ
|xi − xi−1|2dπN(x0, . . . , xN) =

= N
N∑
i=1

ˆ
|xi − xi−1|2dpi−1,1

# (πN)(xi−1, xi) =

= N
N∑
i=1

ˆ
|xi − xi−1|2dϑi(xi−1, xi) = N

N∑
i=1

W 2
2 (µ i−1

N
, µ i

N
).

By the fact that µt is a geodesic,

W 2
2 (µ i−1

N
, µ i

N
) = 1

N2W
2
2 (µ0, µ1),

so we can write

(4.7)
ˆ
C([0,1];Rn)

A2dηN = W 2
2 (µ0, µ1),

then
sup
N

ˆ
C([0,1];Rn)

A2(γ)dηN(γ) < +∞.

Observing that for every t ∈ [0, 1] and all φ ∈ Lipb(Rn) we have,
∣∣∣∣∣
ˆ
C([0,1];Rn)

φ(γ(t))dηN(γ) −
ˆ
C([0,1];Rn)

φ

(
γ

(
⌊Nt⌋
N

))
dηN(γ)

∣∣∣∣∣ ≤

≤
ˆ
C([0,1];Rn)

∣∣∣∣∣φ(γ(t)) − φ

(
γ

(
⌊Nt⌋
N

))∣∣∣∣∣dηN(γ) ≤

≤ Lip(φ)
ˆ
C([0,1];Rn)

∣∣∣∣∣γ(t) − γ

(
⌊Nt⌋
N

)∣∣∣∣∣dηN(γ) ≤

≤ Lip(φ)
ˆ
C([0,1];Rn)

ˆ t

⌊Nt⌋
N

|γ′|dL1dηN(γ),
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so, applying Hölder’s Inequality and thanks to (4.7),
∣∣∣∣∣
ˆ
C([0,1];Rn)

φ(γ(t))dηN(γ) −
ˆ
C([0,1];Rn)

φ

(
γ

(
⌊Nt⌋
N

))
dηN(γ)

∣∣∣∣∣ ≤

= Lip(φ)
√
t− ⌊Nt⌋

N

ˆ
C([0,1];Rn)

√√√√ˆ t

⌊Nt⌋
N

|γ′|2dL1dηN(γ) ≤

≤ Lip(φ)
√
t− ⌊Nt⌋

N

ˆ
C([0,1];Rn)

√√√√ˆ 1

0
|γ′|2dL1dηN(γ) =

= Lip(φ)
√
t− ⌊Nt⌋

N

ˆ
C([0,1];Rn)

√
A2(γ)dηN(γ) ≤

≤ Lip(φ)
√
t− ⌊Nt⌋

N

√√√√ˆ
C([0,1];Rn)

A2(γ)dηN(γ) = Lip(φ)
√
t− ⌊Nt⌋

N
W2(µ0, µ1).

We can therefore write

lim
N

ˆ
φd(et)#ηN = lim

N

ˆ
φd(e ⌊Nt⌋

N

)#ηN = lim
N

ˆ
φdµ ⌊Nt⌋

N

=
ˆ
X

φdµt.

In other words, (et)#ηN ⇀ µt and, thanks to Prokhorov’s Theorem, ((et)#ηN) is tight
in P(Rn). Then, random Ascoli–Arzelà’s Theorem gives us the existence of (ηNj

) such
that ηNj

⇀ η in P(C([0, 1];Rn)) for some η ∈ P(C([0, 1];Rn)). Writing (4.7) for (ηNj
)

and passing to the limit as j → +∞, remembering that A2 is lower semicontinuous, we
obtain, by Lemma (P.20),

ˆ
C([0,1];Rn)

A2(γ)dη(γ) ≤ W 2
2 (µ0, µ1).

By the fact that ˆ
X

φd(et)#η = lim
N

ˆ
X

φd(et)#ηN =
ˆ
X

φdµt,

we also obtain (et)#η = µt for every t ∈ [0, 1].

Since in Rn we have the uniqueness of geodesics, it is interesting to understand if
the same result holds in P2(Rn). What we can say, in general, is the following result.

(4.8) Proposition Let µ0, µ1 ∈ P2(Rn). If there exists a unique π ∈ Γ(µ0, µ1) optimal,
then there exists a unique η ∈ OptGeo(µ0, µ1) and a unique µt ∈ Geo(P2(Rn)) connecting
µ0 and µ1. In particular, µt = (et)#η.
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Proof. As seen in Theorem (4.3), η = Φ#π ∈ OptGeo(µ0, µ1). If η is another optimal
geodesic plan between µ0 and µ1, we have supt(η) ⊆ Geo(Rn) and (e0, e1)#η = π. By
the disintegration Theorem, η = η, so the uniqueness of the optimal geodesic plan
follows. The result therefore follows from Theorem (4.6).

More specifically, if µ0 ≪ Ln, we can combine Theorem (3.10) and the previous
Proposition to get the uniqueness of geodesics.

(4.9) Corollary Consider µ0, µ1 ∈ P2(Rn). If µ0 ≪ Ln, then there exists a unique
µt ∈ Geo(P2(Rn)) joining µ0, µ1 and a unique η ∈ OptGeo(µ0, µ1).

In particular,
µt = (Tt)#µ0,

where T is the optimal transport map from µ0 to µ1 and

Tt = (1 − t)Id + tT.

Proof. Since, by Theorem (3.10), π = (Id, T )#µ0 is the unique optimal plan from µ0 to
µ1, the result follows from Proposition (4.8).

We conclude the section with a semi-explicit (we omit computations) example of
geodesics between two non-atomic measures: further technical details can be found in
[23], [29], [37], [45], [53] and [43], but we want to focus only on the results.

(4.10) Example Fix K0 and K1 two symmetric and positive definite matrices and
m0,m1 ∈ Rn. Consider

µ0 = 1√
(2π)n det(K0)

e− 1
2 (x−m0)·K−1

0 (x−m0)Ln,

µ1 = 1√
(2π)n det(K1)

e− 1
2 (x−m1)·K−1

1 (x−m1)Ln.

It can be shown

min
π∈Γ(µ0,µ1)

C(π) = W 2
2 (µ0, µ1) = |m0 −m1|2 + Tr(K0) + Tr(K1) − 2Tr(K

1
2
1 K0K

1
2
1 ) 1

2 ,

where Tr is the trace (of a matrix) operator, and the geodesic between µ0 and µ1 is

µt = 1√
(2π)n det(Kt)

e− 1
2 (x−mt)·K−1

t (x−mt)Ln,
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where mt = tm1 +(1−t)m0 and Kt = t2K1 +(1−t)2K0 +t(1−t)
(
(K0K1)

1
2 + (K1K0)

1
2
)
.

2 Dynamic Schrödinger problem

Even if the formulations given so far for the Schrödinger problem are the simplest,
since what we are studying is an interpolation problem, the most natural thing is to
study it from the dynamic point of view. In other words, we would like to recover its
most intuitive meaning and formalize it: We will see in this section how to translate the
statement "finding the most likely evolution for systems of diffusive particles between
two different observations" into abstract mathematical language and how to manage this
formulation. Even though we will treat the theory with a fairly high level of generality,
let us keep in mind that the basic idea is given by the following example.

(4.11) Example Consider a system of i.i.d. Brownian particles. Suppose we know,
with a certain accuracy, the positions at two different times. We look for the Brownian
bridge that connects the observations: in other words, we look for the trajectories of the
Brownian particles.

Figure 4.3: An example of Brownian bridge (picture from [38]).
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Coming back to us, before going on, we show the following technical result that is
necessary for us to have the consistency of the definition of the dynamic Schrödinger
problem we want to propose.

(4.12) Proposition Consider R ∈ R+(C([0, 1];Rn)) and µ0, µ1 ∈ P2(Rn). If for some
(and thus all) z ∈ Rn

ˆ
e−|x−z|2−|y−z|2d(e0, e1)#R(x, y) < +∞,

then, for every η ∈ P(C([0, 1];Rn)) such that (e0)#η = µ0, (e1)#η = µ1, HR(η) is well
defined.

Proof. Consider W = |e0 − z|2 + |e1 − z|2. Using the change of variables formula,
ˆ
C([0,1];Rn))

e−WdR =
ˆ
e−|x−z|−|y−z|d(e0, e1)#R(x, y) < +∞

and if η ∈ P(C([0, 1];Rn)) such that (e0)#η = µ0, (e1)#η = µ1, using the fact that
µ0, µ1 ∈ P2(Rn),

ˆ
C([0,1];Rn))

Wdη =
ˆ
C([0,1];Rn))

|e0 − z|2dη +
ˆ
C([0,1];Rn))

|e1 − z|2dη =

=
ˆ

|x− z|2dµ0(x) +
ˆ

|y − z|2dµ1(y) < +∞.

(4.13) Definition Consider R ∈ R+(C([0, 1];Rn)) and µ0, µ1 ∈ P2(Rn). Suppose for
some (and thus all) z ∈ Rn

ˆ
e−|x−z|2−|y−z|2d(e0, e1)#R(x, y) < +∞.

In the so-called dynamic Schrödinger problem we look for

inf {HR(η) : η ∈ P(C([0, 1];Rn)) : (e0)#η = µ0, (e1)#η = µ1} .

(4.14) Proposition Consider R ∈ R+(C([0, 1];Rn)) and µ0, µ1 ∈ P2(Rn). Suppose
H(µ0 ⊗ µ1|(e0.e1)#R) < +∞ and for some (and thus all) z ∈ Rn

ˆ
e−|x−z|2−|y−z|2d(e0, e1)#R(x, y) < +∞.

If the dynamic Schrödinger problem admits a solution, the latter is unique.
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Proof. Using Proposition (1.23), HR is strictly convex where it is finite, so the uniqueness
follows.

(4.15) Lemma Consider R ∈ R+(C([0, 1];Rn)) and µ0, µ1 ∈ P2(Rn). Suppose for some
(and thus all) z ∈ Rn

ˆ
e−|x−z|2−|y−z|2d(e0, e1)#R(x, y) < +∞.

For every η ∈ P(C([0, 1];Rn)) such that (e0)#η = µ0, (e1)#η = µ1

HR(η) = H(e0,e1)#R((e0, e1)#η) +
ˆ
HRxy(ηxy)d(e0, e1)#η(x, y).

Proof. It is sufficient to write [41, Theorem (1.6), (c)] for η and R, applying both sides
log, integrating with respect to η and then applying Proposition (P.6).

Let us now analyze the connection between the primal formulation and the dynamic
formulation of the Schrödinger problem.

(4.16) Theorem (Föllmer) Consider R ∈ R+(C([0, 1];Rn)) and µ0, µ1 ∈ P2(Rn).
Suppose H(µ0 ⊗ µ1|(e0.e1)#R) < +∞ and for some (and thus all) z ∈ Rn

ˆ
e−|x−z|2−|y−z|2d(e0, e1)#R(x, y) < +∞.

The following facts hold true:

(a) if η ∈ P(C([0, 1];Rn)) is the solution to the dynamic Schrödinger problem, then for
every B ∈ B(C([0, 1];Rn))

η(B) =
ˆ

Rxy(B)d(e0, e1)#η(x, y)

and (e0, e1)#η is the solution to the Schrödinger problem,

(b) if γ is the solution to the Schrödinger problem, then η ∈ P(C([0, 1];Rn)) such that,
for every B ∈ B(C([0, 1];Rn)),

η(B) =
ˆ

Rxy(B)dγ(x, y),

is the solution to the dynamic Schrödinger problem.
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Proof. First of all, by Lemma (4.15), if η ∈ P(C([0, 1];Rn)) such that (e0)#η =
µ0, (e1)#η = µ1, then

HR(η) = H(e0,e1)#R((e0, e1)#η) +
ˆ
HRxy(ηxy)d(e0, e1)#η(x, y).

In particular, since Rxy, ηxy ∈ P(C([0, 1],Rn)), by Proposition (1.23), HRxy(ηxy) ≥ 0, so

HR(η) ≥ H(e0,e1)#R((e0, e1)#η)

with equality if and only if ηxy = Rxy for (e0, e1)#η-a.e. (x, y) ∈ Rn × Rn.

(a) Let us start proving that for every for every B ∈ B(C([0, 1];Rn))

η(B) =
ˆ

Rxy(B)d(e0, e1)#η(x, y).

Consider, for every B ∈ B(C([0, 1];Rn))

η(B) =
ˆ

Rxy(B)d(e0, e1)#η(x, y).

By construction, we have ηxy = Rxy for (e0, e1)#η-a.e. (x, y) ∈ Rn × Rn so

HR(η) = H(e0,e1)#R((e0, e1)#η) ≤ HR(η).

By minimality of η, the previous inequality must be an equality, and using the uniqueness
of the minimizer, it follows that η = η.

Now, consider any π ∈ Γ(µ0, µ1) and define for every B ∈ B(C([0, 1];Rn))

π(B) =
ˆ

Rxy(B)dπ(x, y).

By minimality of η, it must be HR(η) ≤ HR(π). By the way,

H(e0,e1)#R((e0, e1)#η) = H(e0,e1)#R((e0, e1)#η) +
ˆ
HRxy(ηxy)d(e0, e1)#η(x, y) = HR(η) ≤

≤ HR(π) = H(e0,e1)#R((e0, e1)#π) = H(e0,e1)#R(π),

so (e0, e1)#η is the solution to the Schrödinger problem.

(b) Consider any η ∈ P(C([0, 1];Rn)) such that (e0)#η = µ0 and (e1)#η = µ1. Then, by
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minimality of γ,

HR(η) ≥ H(e0,e1)#R((e0, e1)#η) ≥ H(e0,e1)#R(γ) = HR(η),

and the result follows.

(4.17) Corollary Consider R ∈ R+(C([0, 1];Rn)) and µ0, µ1 ∈ P2(Rn). Suppose
H(µ0 ⊗ µ1|(e0.e1)#R) < +∞ and for some (and thus all) z ∈ Rn

ˆ
e−|x−z|2−|y−z|2d(e0, e1)#R(x, y) < +∞.

It results

inf
Γ(µ0,µ1)

H(e0,e1)#R = inf {HR(η) : η ∈ P(C([0, 1];Rn)) : (e0)#η = µ0, (e1)#η = µ1} .

Proof. It is a matter of reasoning exactly as in Föllmer’s Theorem.

3 Comparison

With the introduction of the Wiener measure R ε
2
, namely that measure having

r ε
2
δ0 ⊗ Ln as joint law at the times 0 and 1 and whose disintegration with respect to

(e0, e1) is a family (indexed by (x, y) ∈ Rn × Rn) of Brownian bridges with variance ε
2 ,

it is possible to dynamically visualize the example (1.30).
By the fact that

{
R ε

2

}
ε>0

satisfies a large deviation principle with rate function
I = 1

2A2, using [44, Theorem 3.4] and [44, Theorem 3.5], we get

Γ − lim
ε→0

εHR ε
2

= I.

In particular, using the coercivity of I,

lim
ε→0

min
{
HR ε

2
(η) : η ∈ P(C([0, 1];Rn)) : (e0)#η = µ0, (e1)#η = µ1

}
=

= min
{ˆ

C([0,1];Rn)
Idη : η ∈ P(C([0, 1];Rn)), (e0)#η = µ, (e1)#η = ν

}

and the (unique) minimizer of HR ε
2

converges to the (unique) minimizer of the dynamic
optimal transport problem.



Chapter 5

Benamou–Brenier formulas

Also in this chapter, we will consider, as an environment, Rn equipped with the
Euclidean distance.

1 Continuity equation

In the Theory of Continuous Bodies, the Law of Conservation of Mass in Eulerian
form, namely written in a reference system that fixes space rather than the material
points moving within it, is expressed by the so-called continuity equation, namely

∂ρ

∂t
+ div(vρ) = 0,

where ρ is the mass density function of the body and v its velocity field, both in Eulerian
coordinates. Further information on continuous bodies can be found in [5] or, for
non-Italian readers, in [32].

Since we describe mass using the language of Measure Theory, and to allow a more
in-depth theoretical study on the existence of solutions, we need a distributional form of
the equation.

(5.1) Definition Let T ∈ ]0,+∞], c > 0, µt : ]0, T [ → M(Rn) be weakly continuous
and a Borel function v : ]0, T [ × Rn → Rn such that

(t, x) 7−→ vt(x),

where the function {x 7−→ |vt|} belongs to L1(µt) and the function
{
t 7−→ ∥vt∥L1(µt)

}
belongs to L1

loc(]0, T [), and µ ∈ M(Rn). We say that µt is a distributional solution of

105
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the continuity problem, namely

∂µt

∂t
+ div(vtµt) = 0,

µ0 = µ,

if for every φ ∈ C∞
c ([0, T [ × Rn) it holds

ˆ T

0

ˆ (
∂φ

∂t
(t, x) + vt(x) ·Dφ(t, x)

)
dµt(x)dt+

ˆ
φ(0, x)dµ = 0.

In particular, we say that µt : ]0, T [ → M(Rn) weakly continuous is a distributional
solution of the continuity equation, namely

∂µt
∂t

+ div(vtµt) = 0,

if for every φ ∈ C∞
c (]0, T [ × Rn) it holds

ˆ T

0

ˆ (
∂φ

∂t
(t, x) + vt(x) ·Dφ(t, x)

)
dµt(x)dt = 0.

The pair (µt, vt), where µt is a distributional solution of the continuity equation defined
by vt, is called continuity pair.

The technical assumptions are required to have the integrals well defined. By the
way, the basic idea of the definition is the interpretation of a measure as a distribution.
The reader interested in further information about Distribution Theory can read [59,
Part II].

Proving that a curve of measures is a distributional solution of the continuity equation
can be tricky using the definition. Let us look at a useful equivalent formulation that
speeds up the process. We prove first a technical Lemma.

(5.2) Lemma The family

D =
{

N∑
i=1

αiφi : αi ∈ C∞
c (]0,+∞[), φi ∈ C∞

c (Rn), N ∈ N
}

is dense in C∞
c (]0,+∞[ × Rn).

Proof. It is sufficient to apply a variant of the Stone–Weierstrass Theorem.

(5.3) Proposition Let µt : ]0,+∞[ → M(Rn) be weakly continuous and a Borel
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function v : ]0,+∞[ × Rn → Rn such that

(t, x) 7−→ vt(x),

with the function {x 7−→ |vt|} belonging to L1(µt) and the function
{
t 7−→ ∥vt∥L1(µt)

}
belonging to L1

loc(]0,+∞[). The following facts are equivalent:

(a) µt is a distributional solution of the continuity equation,

(b) for every φ ∈ C∞
c (Rn) the function

{
t 7→
´
φ(x)dµt(x)

}
∈ ACloc(]0,+∞[) and its

weak derivative is

d

dt

ˆ
φdµt(x) =

ˆ
Dφ(x) · vt(x)dµt(x).

Proof. Let us start by saying that, by Lemma (5.2), linearity and the dominated
convergence Theorem, it is sufficient to consider tests of the form αφ, where α ∈
C∞
c (]0,+∞[), φ ∈ C∞

c (Rn). Then
ˆ ∞

0

ˆ
(α′(t)φ(x) + α(t)vt(x) ·Dφ(x)) dµt(x)dt =

=
ˆ ∞

0

(
α′(t)

ˆ
φ(x)dµt(x) + α(t)

ˆ
vt(x) ·Dφ(x)dµt(x)

)
dt.

The previous equality proves both implications.

Let us immediately see a first application to the optimal transport theory of the
distributional interpretations of the continuity equation: geodesics in P2(Rn) are solutions
of a continuity equation.

(5.4) Proposition Consider µ0, µ1 ∈ P2(Rn) with µ0 ≪ Ln. Then µt, the geodesic
connecting µ0 and µ1, is a distributional solution of a continuity equation.

Proof. By Theorem (3.10), there exists a unique, up to µ0-negligible sets, minimizer T
for the problem

min
{ˆ

Rn

1
2 |x− T (x)|2dµ0(x) : T : Rn → Rn Borel, T#µ0 = µ1

}
.

Furthermore, by Corollary (4.9), we also know that the constant speed geodesic from µ0

to µ1 is
µt = (Tt)#µ0
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where
Tt = (1 − t)Id + tT.

Now, for every φ ∈ C∞
c (Rn) and for a.e. t ∈ ]0,+∞[ we have, by differentiation under

the integral sign Theorem,

d

dt

ˆ
Rn

φdµt = d

dt

ˆ
Rn

φ(Tt(x))dµ0(x) =
ˆ
Dφ(Tt(x)) · (T − Id)(x)dµ0(x) =

=
ˆ
Dφ(x) ·

(
(T − Id) ◦ T−1

t

)
(x)dµt(x).

Naming

vt = (T − Id) ◦ T−1
t = Id − T−1

t

t

and using Proposition (5.3), we obtain a continuity equation for µt, namely

∂µt
∂t

+ div (vtµt) = 0,

interpreted in the distributional sense.

We conclude the section by reporting the following Lemma, without proof, which
will be useful later.

(5.5) Lemma Let (µt, vt) be a continuity pair and f ∈ H1(Rn). Then the function{
t 7−→

´
fdµt

}
is absolutely continuous and for a.e. t ∈ [0, 1]

∣∣∣∣∣ ddt
ˆ
fdµt

∣∣∣∣∣ ≤
ˆ

|Df ||vt|dµt,

where the exceptional set can be chosen to be independent of f .
Moreover, if the function {t 7−→ ft} belongs to

AC([0, 1];L2(Rn)) ∩ L∞([0, 1];H1(Rn)),

then the function
{
t 7−→

´
ftdµt

}
is absolutely continuous and for a.e. t ∈ [0, 1]

d

ds

(ˆ
fsdµs

)
|s=t =

ˆ
d

ds
fs(t)dµt + d

ds

(ˆ
ftdµs

)
|s=t.

Proof. See [27].
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2 Optimal transport

We are now interested in rewriting the optimal transport problem as a distributional
fluid-dynamic problem: in particular, a problem of curves of measures subject to the
continuity constraint.

First of all, let us introduce the functional we want to minimize: the quadratic action.
From a physical viewpoint, it can be interpreted as a rescaling of the kinetic energy.

(5.6) Definition Consider µ ∈ P2(Rn) and v : Rn → Rn a Borel vector field. We
define their quadratic action as

A(v, µ) =
ˆ

|v|2dµ.

In the following, we will need to use the standard Gaussian several times, so we
establish the following Notation.

(5.7) Notation We denote with ϱ the function in C∞(Rn) such that

ϱ(x) = e−|x|2´
e−|x|2dLn(x)

and for ε > 0,
ϱε(x) = 1

εn
ϱ
(
x

ε

)
.

(5.8) Remark Switching from Cartesian coordinates to generalized spherical ones, we
can state that ˆ

|x|2ϱ(x)dLn(x) ∼
ˆ ∞

0
rn+1e−r2

dr < +∞.

(5.9) Lemma Consider µ ∈ P2(Rn). For every ε > 0, µ ∗ ϱε ∈ C∞(Rn) and µ ∗ ϱε > 0.
Furthermore, as ε → 0+, (µ ∗ ϱε)Ln → µ in (P2(Rn),W2).

Proof. First of all,
µ ∗ ϱε(x) =

ˆ
ϱε(x− y)dµ(y).

In particular, µ ∗ ϱε ∈ C∞(Rn) and µ ∗ ϱε > 0.
Now, consider for every B ∈ B(Rn × Rn)

Σε(B) =
ˆ ˆ

Bx

ϱε(x− y)dLn(y)dµ(x),
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where Bx = B ∩ {(x, y) ∈ Rn × Rn : y ∈ R}, namely a fiber of B. Then, using the
change of variables z = x−y

ε
,

W 2
2 (µ, µ ∗ ϱεLn) ≤

ˆ
|x− y|2dΣε(x, y) =

ˆ ˆ
|x− y|2ϱε(x− y)dLn(y)dµ(x) =

= 1
εn

ˆ ˆ
|x− y|2ϱ

(
x− y

ε

)
dLn(y)dµ(x) =

= ε2

εn
εn
ˆ ˆ

|z|2ϱ(z)dLn(z)dµ = ε2µ(Rn)
ˆ

|z|2ϱ(z)dLn(z) =

= ε2
ˆ

|z|2ϱ(z)dLn(z),

so W 2
2 (µ, µ ∗ ϱεLn) → 0 as ε → 0+.

The next is the main result of the section, where we show that the optimal transport
problem is equivalently reformulated through the minimization of the quadratic action
functional subject to the continuity constraint. As regards the ≤ inequality, arguing
by density, using a convolution of measures, we have proved that it is sufficient to deal
with the case of sub-linear growth of the vector field vt: for this specific case, the proof
is a direct computation that requires the flow of the vector field. For the ≥ inequality
and the existence of the minimizers, we explicitly build the curve of measures and the
vector field using geodesics in Rn and Lemma (P.10). All the ideas are expansions of
the contents taken from [1].

(5.10) Theorem (Benamou–Brenier formula) For every µ0, µ1 ∈ P2(Rn) it holds

W 2
2 (µ0, µ1) = min

{ˆ 1

0
A(vt, µt)dt : (µt, vt) continuity pair, µt : [0, 1] → P2(Rn)

}
.

Proof. First of all, let us start proving

W 2
2 (µ0, µ1) ≤ inf

{ˆ 1

0
A(vt, µt)dt : (µt, vt) continuity pair, µt : [0, 1] → P2(Rn)

}
.

Take µt a distributional solution of

∂µt
∂t

+ div(vtµt) = 0

with vt smooth and with no more than linear growth. By [1, Proposition 16.4],

µt = (Xt)#µ0,
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where Xt is the flow of vt. Considering the admissible plan Σ = (Id, X1)#µ0,

W 2
2 (µ0, µ1) ≤

ˆ
|x− y|2dΣ(x, y) =

ˆ
|X0(x) −X1(x)|2dµ0(x) =

=
ˆ ∣∣∣∣∣
ˆ 1

0

d

dt
Xt(x)dt

∣∣∣∣∣
2

dµ0(x) =
ˆ ∣∣∣∣∣
ˆ 1

0
vt(Xt(x))dt

∣∣∣∣∣
2

dµ0(x)

so, by Hölder’s inequality and Fubini–Tonelli’s Theorem,

W 2
2 (µ0, µ1) ≤

ˆ ˆ 1

0
|vt(Xt(x))|2dtdµ0(x) =

ˆ 1

0

ˆ
|vt(Xt(x))|2dµ0(x)dt =

=
ˆ 1

0

ˆ
|vt|2dµ0dt =

ˆ 1

0
A(vt, µt)dt.

In the general case, consider for every t ∈ [0, 1]

µεt = µt ∗ ϱεLn, vεt = vtµt ∗ ϱεLn

µεt
.

Observing that µεt is a distributional solution of

∂µt
∂t

+ div(vεtµt) = 0,

by the previous case (see [3, Proposition 8.1.8] for details on the growth),

W 2
2 (µε0, µε1) ≤

ˆ 1

0
A(vεt , µεt)dt.

Now, denoting for every B ∈ B(Rn) and every x ∈ Rn

νx(B) = 1´
ϱε(x− y)dµt(y)

ˆ
B

ϱε(x− y)dµt(y),

by Hölder’s inequality, ∣∣∣∣∣
ˆ
vt(y)dνx(y)

∣∣∣∣∣ ≤
ˆ

|vt(y)|2dνx(y)

so ∣∣∣∣∣
ˆ

vt(y)ϱε(x− y)´
ϱε(x− y)dµt(y)dµt(y)

∣∣∣∣∣
2

≤
ˆ

|vt(y)|2ϱε(x− y)´
ϱε(x− y)dµt(y)dµt(y)
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or, in other words,
∣∣∣´ vt(y)ϱε(x− y)dµt(y)

∣∣∣2
|
´
ϱε(x− y)dµt(y)|2 ≤

´
|vt(y)|2ϱε(x− y)dµt(y)´

ϱε(x− y)dµt(y) .

Multiplying both sides by ˆ
ϱε(x− y)dµt(y)

and integrating in x we get

ˆ ∣∣∣´ vt(y)ϱε(x− y)dµt(y)
∣∣∣2

|
´
ϱε(x− y)dµt(y)|2

ˆ
ϱε(x− y)dµt(y)dLn(x) ≤

≤
ˆ ´

|vt(y)|2ϱε(x− y)dµt(y)´
ϱε(x− y)dµt(y)

ˆ
ϱε(x− y)dµt(y)dLn(x),

so for every t ∈ [0, 1]

A(vεt , µεt) =
ˆ

|vεt |2dµεt ≤
ˆ

|vt(y)|2
(ˆ

ϱε(x− y)dLn(x)
)
dµt(y) = A(vt, µt).

Reassessing,

W 2
2 (µε0, µε1) ≤

ˆ 1

0
A(vt, µt)dt,

therefore

W2(µ0, µ1) ≤ W2(µ0, µ
ε
0) +W2(µε0, µε1) +W2(µε1, µ1) ≤

≤ W2(µ0, µ
ε
0) +

(ˆ 1

0
A(vt, µt)dt

) 1
2

+W2(µε1, µ1)

and, by Lemma (5.9), passing to the limit as ε → 0+, we obtain

W 2
2 (µ0, µ1) ≤

ˆ 1

0
A(vt, µt)dt

so, passing to the infimum for µt, the desired inequality comes.

Let us now prove the converse inequality and the existence of a minimizer. Fix
Σ ∈ Γ(µ0, µ1) and for every t ∈ ]0, 1[ consider the function et : Rn × Rn → Rn such that

et(x, y) = (1 − t)x+ ty = x+ t(y − x).
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Take the geodesic
µt = (et)#Σ.

Clearly, ˆ
|x− y|2dΣ(x, y) < +∞,

so, by Lemma (P.10), for every t ∈ ]0, 1[ there exists vt ∈ L2(Rn, µt;Rn) such that
(et)#(y − x)Σ = vtµt and

∥vt∥L2(Rn,µt;Rn) ≤ ∥y − x∥L2(Rn×Rn,Σ;Rn) = W2(µ0, µ1).

In particular,

W 2
2 (µ0, µ1) ≥ ∥vt∥2

L2(Rn,µt;Rn) =
ˆ
Rn

|vt|2dµt = A(vt, µt)

so, integrating both sides in t,

(5.11) W 2
2 (µ0, µ1) ≥

ˆ 1

0
A(vt, µt)dt.

Now, given φ ∈ C∞
c (Rn)

d

dt

ˆ
φdµt = d

dt

ˆ
φ(et(x, y))dΣ(x, y)

and, by the differentiation under the integral sign Theorem,

d

dt

ˆ
φdµt =

ˆ
Dφ(et(x, y)) · (y − x)dΣ(x, y) =

ˆ
Dφ · vtdµt,

so, by Proposition (5.3), µt is a distributional solution of

∂µt
∂t

+ div(vtµt) = 0,

then µt is a minimizer and the proof is complete.

(5.12) Remark Combining Benamou–Brenier Formula with Theorem (4.3), we obtain

min
{ˆ

C([0,1];X)
A2(γ)dη(γ) : η ∈ P(C([0, 1];X)), (e0)#η = µ, (e1)#η = ν

}
=

= min
{ˆ 1

0
A(vt, µt)dt : (µt, vt) continuity pair, µt : [0, 1] → P2(Rn)

}
.
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Let us see an application of the Benamou–Brenier formula to functional inequalities
taken from [1].

(5.13) Proposition Let (µt, vt) be a continuity pair such that {t 7−→ A(vt, µt)} belongs
to L1(0, 1). Then µt ∈ AC2([0, 1]; P2(Rn)) and |µ′

t|2 ≤ A(vt, µt) for a.e. t ∈ ]0, 1[.

Proof. Up to a rescaling in the Benamou–Brenier Formula, for every s, t ∈ [0, 1] with
s ≤ t it holds

W 2
2 (µs, µt) ≤ (t− s)

ˆ t

s

A(vτ , µtau)dL1(τ),

so the results follow by Lemma (P.37).

Up to a generalization of the technique used to prove the ≥ inequality in the
Benamou–Brenier formula, we obtain the following result.

(5.14) Theorem If µt ∈ AC2([0, 1]; P2(Rn)), then there exists a time-dependent vector
field vt such that (µt, vt) is a continuity pair and for a.e. t ∈ ]0, 1[ it holds

A(vt, µt) = |µ′
t|2.

Proof. First of all, by [1, Remark 10.8], there exists η ∈ P (C([0, 1]);Rn) such that
supt(η) ⊆ AC2([0, 1];Rn) and

(5.15)
ˆ
C([0,1];Rn)

A2(γ)dη(γ) ≤
ˆ 1

0
|µ′
t|2dL1(t) < +∞.

Using Fubini–Tonelli’s Theorem,
ˆ 1

0

(ˆ
C([0,1];Rn)

|γ′|2(t)dη(γ)
)
dL1(t) < +∞,

so for a.e. t ∈ ]0, 1[ it holds
ˆ
C([0,1];Rn)

|γ′|2(t)dη(γ) < +∞.

In particular, for a.e. t ∈ ]0, 1[ is well defined {γ 7→ γ′(t)} ∈ L2(C([0, 1];Rn), η,Rn),
therefore, by Lemma (P.10), for a.e. t ∈ ]0, 1[ there exists vt ∈ L2(Rn, µt;Rn) such that
(et)#(γ′(t)η) = vtµt and

(5.16) ∥vt∥L2(Rn,µt;Rn) ≤ ∥γ′(t)∥L2(C([0,1];Rn),η;Rn).
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Given φ ∈ C∞
c (Rn), by differentiation under the integral sign Theorem,

d

dt

ˆ
φdµt = d

dt

ˆ
φ(γ(t))dη(γ) =

ˆ
C([0,1];Rn)

Dφ(γ(t)) · γ′(t)dη(γ) =

=
ˆ
Dφ · d(et)#(γ′(t)η) =

ˆ
Dφ · d(vtµt) =

ˆ
Dφ · vtdµt,

so, by Proposition (5.3), (µt, vt) is a continuity pair.
Now, by (5.16), Fubini–Tonelli’s Theorem and (5.15),

ˆ 1

0
A(vt, µt)dL1(t) =

ˆ 1

0

(ˆ
|vt|2dµt

)
dL1(t) ≤

ˆ 1

0

(ˆ
C([0,1];Rn)

|γ′|2(t)dη(γ)
)
dL1(t) =

=
ˆ
C([0,1];Rn)

(ˆ 1

0
|γ′|2(t)dL1(t)

)
dη(γ) =

ˆ
C([0,1];Rn)

A2(γ)dη(γ) ≤

≤
ˆ 1

0
|µ′
t|2dL1(t)

and, by Proposition (5.13), for a.e. t ∈ ]0, 1[

(5.17) |µ′
t|2 ≤ A(vt, µt).

Let us prove that for a.e. t ∈ ]0, 1[ it holds A(vt, µt) = |µ′
t|2. By contradiction, suppose

there exists B ∈ B(]0, 1[) such that L1(B) > 0 and for every t ∈ B

A(vt, µt) ̸= |µ′
t|2,

that is, by (5.17), for a.e. t ∈ B

|µ′
t|2 < A(vt, µt).

Observing that
ˆ 1

0
A(vt, µt)dL1(t) =

ˆ
B

A(vt, µt)dL1(t) +
ˆ

]0,1[\B
A(vt, µt)dL1(t) >

>

ˆ
B

|µ′
t|2dL1(t) +

ˆ
]0,1[\B

A(vt, µt)dL1(t) =

=
ˆ 1

0
|µ′
t|2dL1(t)

we arrive at the desired contradiction, so the result follows.

Finally, thanks to the previous Theorem, we can exhibit this useful estimate.
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(5.18) Corollary Consider µt ∈ AC2([0, 1]; P2(Rn)). For every f ∈ Lipb(Rn) ∩C1(Rn)
it holds ∣∣∣∣∣

ˆ
fdµ1 −

ˆ
fdµ0

∣∣∣∣∣ ≤
ˆ 1

0

(ˆ
|Df |2dµt

) 1
2

|µ′
t|dL1(t).

Proof. By Theorem (5.14), there exists a time-dependent vector field vt such that (µt, vt)
is a continuity pair and for a.e. t ∈ ]0, 1[ it holds

∥vt∥2
L2(Rn,µt;Rn) =

ˆ
|vt|2dµt = A(vt, µt) = |µ′

t|2,

then
∥vt∥L2(Rn,µt;Rn) = |µ′

t|.

For every h ∈ N consider a cut-off function ζ ∈ C∞
c (Rn) such that 0 ≤ ζ ≤ 1 in Rn and

ζ = 1 on B(0, h). Take
fh = ζRhf ∈ C∞

c (Rn).

By Proposition (5.3),
∣∣∣∣∣
ˆ
fhdµ1 −

ˆ
fhdµ0

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ 1

0

d

dt

(ˆ
fhdµt

)
dL1

∣∣∣∣∣ =
∣∣∣∣∣
ˆ 1

0

(ˆ
Dfh · vtdµt

)
dL1(t)

∣∣∣∣∣,
so, by Hölder’s inequality,

∣∣∣∣∣
ˆ
fhdµ1 −

ˆ
fhdµ0

∣∣∣∣∣ ≤
ˆ 1

0

(ˆ
|Dfh|2dµt

) 1
2

∥vt∥L2(Rn,µt;Rn)dL1(t) =

=
ˆ 1

0

(ˆ
|Dfh|2dµt

) 1
2

|µ′
t|dL1(t).

The estimate follows by the dominated convergence Theorem.

3 Fokker–Planck equations

The simplest equations of (continuous) motion for a system of floating particles are
the Fokker–Planck equation backward or forward, namely

−∂ρ

∂t
+ div(vρ) = c∆ρ, ∂ρ

∂t
+ div(vρ) = c∆ρ,

where ρ is the probability distribution of the system and v its velocity field, both in
Eulerian coordinates. They are mainly used to describe small Brownian systems, a
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current in an electrical circuit and the electric field in a laser. Further information can
be found in [58]. As in the case of the continuity equation, we need a distributional
form.

(5.19) Definition Let T ∈ ]0,+∞], c > 0, µt : ]0, T [ → M(Rn) be weakly continuous
and a Borel function v : ]0, T [ × Rn → Rn such that

(t, x) 7−→ vt(x),

where the function {x 7−→ |vt|} belongs to L1(µt) and the function
{
t 7−→ ∥vt∥L1(µt)

}
belongs to L1

loc(]0, T [), and µ ∈ M(Rn). We say that µt is a distributional solution of
the backward Fokker–Planck problem, namely

−∂µt

∂t
+ div(vtµt) = c∆µt,

µ0 = µ,

if for every φ ∈ C∞
c ([0, T [ × Rn) it holds

ˆ T

0

ˆ (
−∂φ

∂t
(t, x) + vt(x) ·Dφ(t, x) − c∆φ(t, x)

)
dµt(x)dt+

ˆ
φ(0, x)dµ = 0.

In particular, we say that µt : ]0, T [ → M(Rn) weakly continuous is a distributional
solution of the backward Fokker–Planck equation, namely

−∂µt
∂t

+ div(vtµt) = c∆µt,

if for every φ ∈ C∞
c (]0, T [ × Rn) it holds

ˆ T

0

ˆ (
−∂φ

∂t
(t, x) + vt(x) ·Dφ(t, x) − c∆φ(t, x)

)
dµt(x)dt = 0.

The pair (µt, vt), where µt is a distributional solution of the backward Fokker–Planck
equation defined by vt, is called backward Fokker–Planck pair.

(5.20) Definition Let T ∈ ]0,+∞], c > 0, µt : ]0, T [ → M(Rn) be weakly continuous
and a Borel function v : ]0, T [ × Rn → Rn such that

(t, x) 7−→ vt(x),

where the function {x 7−→ |vt|} belongs to L1(µt) and the function
{
t 7−→ ∥vt∥L1(µt)

}
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belongs to L1
loc(]0, T [), and µ ∈ M(Rn). We say that µt is a distributional solution of

the forward Fokker–Planck problem, namely

∂µt

∂t
+ div(vtµt) = c∆µt,

µ0 = µ,

if for every φ ∈ C∞
c ([0, T [ × Rn) it holds

ˆ T

0

ˆ (
∂φ

∂t
(t, x) + vt(x) ·Dφ(t, x) − c∆φ(t, x)

)
dµt(x)dt+

ˆ
φ(0, x)dµ = 0.

In particular, we say that µt : ]0, T [ → M(Rn) weakly continuous is a distributional
solution of the forward Fokker–Planck equation, namely

−∂µt
∂t

+ div(vtµt) = c∆µt,

if for every φ ∈ C∞
c (]0, T [ × Rn) it holds

ˆ T

0

ˆ (
∂φ

∂t
(t, x) + vt(x) ·Dφ(t, x) − c∆φ(t, x)

)
dµt(x)dt = 0.

The pair (µt, vt), where µt is a distributional solution of the forward Fokker–Planck
equation defined by vt, is called forward Fokker–Planck pair.

Also in this case we can exhibit a useful equivalent formulation that speeds up the
process of proving that a curve of measures is a solution of the Fokker–Planck equations.

(5.21) Proposition Let c > 0 and µt : ]0,+∞[ → M(Rn) be weakly continuous and a
Borel function v : ]0,+∞[ × Rn → Rn such that

(t, x) 7−→ vt(x),

with the function {x 7−→ |vt|} belonging to L1(µt) and the function
{
t 7−→ ∥vt∥L1(µt)

}
belonging to L1

loc(]0,+∞[). The following facts are equivalent:

(a) µt is a distributional solution of the backward Fokker–Planck equation,

(b) for every φ ∈ C∞
c (Rn) the function

{
t 7→
´
φ(x)dµt(x)

}
∈ ACloc(]0,+∞[) and its

weak derivative is

d

dt

ˆ
φdµt(x) = −

ˆ
(Dφ(x) · vt(x) + c∆φ(x)) dµt(x).
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Proof. It is similar to the proof of Proposition (5.3).

(5.22) Proposition Let c > 0 and µt : ]0,+∞[ → M(Rn) be weakly continuous and a
Borel function v : ]0,+∞[ × Rn → Rn such that

(t, x) 7−→ vt(x),

with the function {x 7−→ |vt|} belonging to L1(µt) and the function
{
t 7−→ ∥vt∥L1(µt)

}
belonging to L1

loc(]0,+∞[). The following facts are equivalent:

(a) µt is a distributional solution of the forward Fokker–Planck equation,

(b) for every φ ∈ C∞
c (Rn) the function

{
t 7→
´
φ(x)dµt(x)

}
∈ ACloc(]0,+∞[) and its

weak derivative is

d

dt

ˆ
φdµt(x) =

ˆ
(Dφ(x) · vt(x) + c∆φ(x)) dµt(x).

Proof. It is similar to the proof of Proposition (5.3).

We conclude the section by reporting the following Lemma, without proof, which
will be useful later.

(5.23) Lemma Let c > 0 and (µt, vt) be a backward (resp. forward) Fokker–Planck pair
and f ∈ D(∆) ⊆ H1(Rn). Then the function

{
t 7−→

´
fdµt

}
is absolutely continuous

and for a.e. t ∈ [0, 1]
∣∣∣∣∣ ddt
ˆ
fdµt

∣∣∣∣∣ ≤
ˆ

(|Df ||vt| + c|∆f |) dµt,

where the exceptional set can be chosen to be independent of f .
Moreover, if the function {t 7−→ ft} belongs to

AC([0, 1], L2(Rn)) ∩ L∞([0, 1], H1(Rn))

and the function {t 7−→ ∆ft} belongs to

L∞([0, 1], L2(Rn)),
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then the function
{
t 7−→

´
ftdµt

}
is absolutely continuous and for a.e. t ∈ [0, 1]

d

ds

(ˆ
fsdµs

)
|s=t =

ˆ (
d

ds
fs

)
|s=tdµt + d

ds

(ˆ
ftdµs

)
|s=t.

Proof. See [27].

4 Schrödinger problem

We have already underlined in Example (1.30) that given ε > 0, considering R ε
2

=
r ε

2
Ln ⊗ Ln, where

r ε
2
(x, y) = 1√

(2πε)n
e− |x−y|2

2ε ,

and given µ, ν ∈ P(X) such that µ, ν ≪ Ln, HR ε
2

is well defined on Γ(µ, ν). In this
section, we would like to focus on this situation and show that the Schrödinger problem
can also be reformulated, producing a Benamou–Brenier formula. In particular, we will
consider only the case of µ0 = ϱ0Ln, µ1 = ϱ1Ln ∈ P(Rn) with bounded densities and
supports following, mainly, [27] in which can be found the generalization in the curved
and possibly non-smooth setting. With these assumptions, it is not restrictive to assume
that every continuity (resp. backward Fokker–Planck or forward Fokker–Planck) pair
(µt, vt) verifies

(5.24) ∃ C > 0,∀ t ∈ [0, 1] : µt ≤ CLn.

Once the framework of hypotheses has been defined, the first thing we can say is that
we continue to have existence, uniqueness and the structural formula for the solution of
the Schrödinger problem stated in Theorem (1.28).

(5.25) Corollary For every ε > 0, there exists a unique minimizer γ of HR ε
2

in
Γ(µ0, µ1).

In particular, there exist f ε, gε ∈ L1(Rn) ∩ L∞(Rn), unique a.e. in Rn up to a
rescaling

{
(f ε, gε) 7→ (cf ε, gε

c
)
}

with some c > 0, with supports included in supt(µ0) and
supt(µ1) respectively, such that

γ = (f ε ⊗ gε)R ε
2
.

Proof. It is a direct consequence of the Theorem (1.28).
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(5.26) Notation For every ε > 0, for every x ∈ Rn, let us denote

f εt (x) =


f ε(x) if t = 0,ˆ
f ε(y)r tε

2
(x, y)dLn(y) if 0 < t ≤ 1,

gεt (x) =


ˆ
gε(y)r (1−t)ε

2
(x, y)dLn(y) if 0 ≤ t < 1,

gεt (x) if t = 1.

Furthermore, let us denote

ϱεt =


ϱ0 if t = 0,

f εt g
ε
t if 0 < t < 1,

ϱ1 if t = 1,

µεt =


µ0 if t = 0,

ϱεtLn if 0 < t < 1,

µ1 if t = 1.

Finally, let us denote for every t ∈ [0, 1]

φεt = ε log f εt , ψεt = ε log gεt

and ϑεt = 1
2(ψεt − φεt).

We collect in the following Lemmas the main technical results necessary for the
purposes of the section.

(5.27) Lemma For every ε > 0, the following facts hold true:

(a) for every t ∈ [0, 1] the functions f εt , gεt , ϱεt , φεt , ψεt and ϑεt are well defined,

(b) for every t ∈ [0, 1] µεt ∈ P2(Rn),

(c) the function {t 7−→ H(µεt |Ln)} is continuous on [0, 1],

(d) for every t ∈ [0, 1] it holds f εt , gεt ∈ D(∆) ⊆ H1(Rn),

(e) for every t ∈ ]0, 1[ it holds ϱεt ∈ D(∆) ⊆ H1(Rn),

(f) for every t ∈ [0, 1] it holds φεt , ψεt , ϑεt ∈ D(∆loc) ⊆ H1(Rn),

(g) the functions {t 7−→ f εt } , {t 7−→ gεt} belong to

C([0, 1], L2(Rn)) ∩ ACloc([0, 1], H1(Rn)) ∩ L∞([0, 1], L∞(Rn))
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and for a.e. t ∈ [0, 1]

∂f εt
∂t

= ε

2∆f εt ,
∂gεt
∂t

= −ε

2∆gεt ,

(h) the function {t 7−→ ϱεt} belong to

C([0, 1], L2(Rn)) ∩ AC([0, 1], L2(Rn)) ∩ ACloc(]0, 1[ , H1(Rn)) ∩ L∞([0, 1], L∞(Rn))

and for a.e. t ∈ [0, 1]
∂ϱεt
∂t

+ div(Dϑεtϱεt) = 0,

(i) for every x ∈ Rn, for every compact K in [0, 1], there exists M > 0, depending only
on ϱ0, ϱ1, K, x, such that the functions {t 7−→ φεt},{t 7−→ ψεt},{t 7−→ ϑεt} belong to

AC(K,H1(Rn, e−V Ln)),

where V (x) = M |x− x|2, and for a.e. t ∈ [0, 1]

∂φεt
∂t

= 1
2 |Dφεt |2 + ε

2∆φεt , −∂ψεt
∂t

= 1
2 |Dψεt |2 + ε

2∆ψεt ,

∂ϑεt
∂t

+ 1
2 |Dϑεt |2 = −ε2

8
(
2∆ log ϱεt + |D log ϱεt |2

)
,

(j) for every δ ∈ ]0, 1[, for every x ∈ Rn there exist C,C ′ > 0, depending only on
ϱ0, ϱ1, x, and C ′′ > 0, depending only on ϱ0, ϱ1, x, δ, such that

∀ t ∈ [0, 1], a.e. x ∈ Rn : ϱεt(x) ≤ Ce−C′|x−x|2

∀ t ∈ [δ, 1], a.e. in Rn : Lip(φεt) + Lip(ψε1−t) ≤ C ′′(1 + |· − x|),

(k) it holds

ˆ ˆ 1

0
|Dφεt |2ϱεtdtdL2 < +∞,

ˆ ˆ 1

0
|Dψεt |2ϱεtdtdL2 < +∞, |Dϑεt |2ϱεtdtdL2 < +∞.

Proof. See [28].

(5.28) Lemma For every ε, t ∈ ]0, 1[ and any p ∈ N, let us denote with hεt any of
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φεt , ψ
ε
t , ϑ

ε
t , log ϱεt and with Hε

t any of

ϱεt |Dhεt |p, ϱεt log ϱεt |Dhεt |p, |Dϱεt ||Dhεt |p, ∆ϱεt |Dhεt |p, ϱεtDh
ε
t ·D(∆hεt).

Then, Hε
t ∈ L1(Rn). Moreover, for every δ ∈

]
0, 1

2

[
and every x ∈ Rn we have

lim
R→+∞

sup
t∈[δ,1−δ]

ˆ
X\B(x,R)

|Hε
t |dLn = 0.

Finally, the function
{
t 7−→

´
Hε
t dLn

}
defined on ]0, 1[ is continuous.

Proof. See [28].

(5.29) Lemma Consider u ∈ L2(Rn) ∩ L∞(Rn) positive a.e. in Rn, δ > 0 and, for
every t ≥ 0,

Cδt (x) = log
(ˆ

rt(x, y)u(y)dLn(y) + δ

)
.

The following facts hold true:

(a) there exists C > 0 such that for every t ≥ 0

∥Cδt∥L∞(Rn) ≤ C,

(b) for all x ∈ Rn and M > 0, the function
{
t 7−→ Cδt

}
belongs to

C([0,+∞[ , L2(Rn, e−V Ln)) ∩ ACloc(]0,+∞[ , L2(Rn, e−V Ln)),

where V (y) = M |x− y|2, and for a.e. t > 0

∂Cδt
∂t

= |DCδt |2 + ∆Cδt ,

(c) the functions
{
t 7−→ |DCδt |

}
,
{
t 7−→ ∆Cδt

}
belong to L∞

loc(]0,+∞[ , L2(Rn)),

(d) let µt in P(Rn), where t ≥ 0, be weakly continuous with µt ≤ CLn for some C > 0,
independent of t. Set ηt = dµt

dLn and denote with Hδ
t any of

Cδtηt, |Cδt |2ηt, |DCδt |ηt, |Cδt |2ηt.

Then, Hδ
t ∈ L1(Rn) for every t, δ > 0 and, for any compact K in ]0,+∞[, the

function
{
(t, x) 7−→ Hδ

t (x)
}

belongs to L1(K × Rn,L1 ⊗ Ln).
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Proof. See [27].

Now that we have summarized the entire technical system, we can proceed to show
some dynamical representation formulas. The whole proof essentially relies on the use
of the Gauss–Green formula and on the explicit representation of the minimizer of the
Schrödinger problem.

(5.30) Proposition For every ε > 0, one has

ε min
Γ(µ0,µ1)

HR ε
2

= ε

2 (H(µ0 | Ln) +H(µ1 | Ln)) +

+
ˆ ˆ 1

0

(
1
2 |Dϑεt |2 + ε2

8 |D log ϱεt |2
)
ϱεtdtdLn.

Proof. Consider R > 0 and a cut-off function ζ ∈ C∞
c (B(0, R + 1)) such that 0 ≤ ζ ≤ 1

and ζ = 1 on B(0, R). By Lemma (5.27), ϱεt ∈ AC([0, 1], L2(Rn)) and for every
compact K in [0, 1] there exists M > 0 such that ϑεt ∈ AC(K,H1

0 (Rn, e−V Ln)), with
V (x) = M |x|2. In particular, the function

{
t 7−→

´
ζϑεtϱ

ε
tdLn

}
belongs to ACloc(]0, 1[)

and for a.e. t ∈ ]0, 1[, using properties of the Bochner integral (see, for example, [26])
and Lemma (5.27),

d

dt

ˆ
ζϑεtϱ

ε
tdLn =

ˆ
ζ
d

dt
ϑεtϱ

ε
tdLn +

ˆ
ζϑεt

d

dt
ϱεtdLn

so, by Lemma (5.27),

d

dt

ˆ
ζϑεtϱ

ε
tdLn =

ˆ
ζ

(
−1

2 |Dϑεt |2 − ε2

8
(
2∆ log ϱεt + |D log ϱεt |2

))
ϱεtdLn+

−
ˆ
ζϑεtdiv(Dϑεtϱεt)dLn =

= −1
2

ˆ
ζ|Dϑεt |2ϱεtdLn − ε2

4

ˆ
ζ∆ log ϱεtϱεtdLn+

− ε2

8

ˆ
ζ|D log ϱεt |2ϱεtdLn −

ˆ
ζϑεtdiv(Dϑεtϱεt)dLn.

Using the Gauss–Green formula, and the fact that Rn has no boundary,
ˆ
ζ∆ log ϱεtϱεtdLn = −

ˆ
D(ζϱεt) ·D log ϱεtdLn = −

ˆ
D(ζϱεt) · 1

ϱεt
DϱεtdLn =

= −
ˆ
Dζ ·DϱεtdLn −

ˆ
ζ

1
ϱεt
Dϱεt · 1

ϱεt
Dϱεtϱ

ε
tdLn =

= −
ˆ
Dζ ·DϱεtdLn −

ˆ
ζ|D log ϱεt |2ϱεtdLn
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and
ˆ
ζϑεtdiv(Dϑεtϱεt)dLn = −

ˆ
D(ζϑεt) ·DϑεtϱεtdLn =

= −
ˆ
ζ|Dϑεt |2ϱεtdLn −

ˆ
ϑεtDζ ·DϑεtϱεtdLn,

so

d

dt

ˆ
ζϑεtϱ

ε
tdLn = 1

2

ˆ
ζ|Dϑεt |2ϱεtdLn + ε2

8

ˆ
ζ|D log ϱεt |2ϱεtdLn+

+
ˆ
Dζ ·DϱεtdLn +

ˆ
ϑεtDζ ·DϑεtϱεtdLn.

Take δ ∈
]
0, 1

2

[
and integrate both sides with respect to t between δ and 1 − δ to obtain,

again using the properties of the Bochner integral,
ˆ
ζϑε1−δϱ

ε
1−δdLn −

ˆ
ζϑεδϱ

ε
δdLn = 1

2

ˆ ˆ 1−δ

δ

ζ|Dϑεt |2ϱεtdtdLn+

+ ε2

8

ˆ ˆ 1−δ

δ

ζ|D log ϱεt |2ϱεtdtdLn+

+
ˆ ˆ 1−δ

δ

Dζ ·DϱεtdtdLn+

+
ˆ ˆ 1−δ

δ

ϑεtDζ ·DϑεtϱεtdtdLn.

Now, we want to pass to the limit as R → ∞. As regards the terms

1
2

ˆ ˆ 1−δ

δ

ζ|Dϑεt |2ϱεtdtdLn ε2

8

ˆ ˆ 1−δ

δ

ζ|D log ϱεt |2ϱεtdtdLn,

using the monotone convergence Theorem, we can pass the limit under the integral sign.
For the other terms, we can apply the dominated convergence Theorem: indeed, Lemma
(5.28) ensures the validity of the a.e. convergence and the L1(Rn) bounds. We then get

ˆ
ϑε1−δϱ

ε
1−δdLn −

ˆ
ϑεδϱ

ε
δdLn =

ˆ ˆ 1−δ

δ

(
1
2 |Dϑεt |2 + ε2

8 |D log ϱεt |2
)
ϱεtdtdLn.(5.31)

Now, by the fact that δ ∈
]
0, 1

2

[
⊆ ]0, 1[,

ε log ϱεδ = ε log f εδ gεδ = ε log f εδ + ε log gεδ = φεδ + ψεδ ,

so φεδ = ε log ϱεδ − ψεδ , then ϑεδ = ψεδ − ε
2 log ϱεδ. Analogously, we can prove the identity
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ϑε1−δ = −φε1−δ + ε
2 log ϱε1−δ, so we can rewrite (5.31) as

ε

2

(ˆ
log ϱεδϱεδdLn +

ˆ
log ϱε1−δϱ

ε
1−δdLn

)
+

−
(ˆ

ψεδϱ
ε
δdLn +

ˆ
φε1−δϱ

ε
1−δdLn

)
=
ˆ ˆ 1−δ

δ

(
1
2 |Dϑεt |2 + ε2

8 |D log ϱεt |2
)
ϱεtdtdLn.

Passing to the limit as δ → 0, in the right-hand side we can use the monotone convergence
Theorem and in the left-hand side the dominated convergence Theorem combined with
Lemma (5.27) and Lemma (5.28), we obtain

ε

2

(ˆ
log ϱ0ϱ0dLn +

ˆ
log ϱ1ϱ1dLn

)
+

−
(ˆ

ψε0ϱ0dLn +
ˆ
φε1ϱ1dLn

)
=
ˆ ˆ 1

0

(
1
2 |Dϑεt |2 + ε2

8 |D log ϱεt |2
)
ϱεtdtdLn,

that can be rewritten, using the facts that φε0 + ψε0 = ε log ϱ0 and φε1 + ψε1 = ε log ϱ1, as
ˆ
φε0ϱ0dLn +

ˆ
ψε1ϱ1dLn+

− ε

2

(ˆ
log ϱ0ϱ0dLn +

ˆ
log ϱ1ϱ1dLn

)
=
ˆ ˆ 1

0

(
1
2 |Dϑεt |2 + ε2

8 |D log ϱεt |2
)
ϱεtdtdLn,

or, in other words,
ˆ
φε0ϱ0dLn +

ˆ
ψε1ϱ1dLn = ε

2 (H(µ0 | Ln) +H(µ1 | Ln)) +

+
ˆ ˆ 1

0

(
1
2 |Dϑεt |2 + ε2

8 |D log ϱεt |2
)
ϱεtdtdLn.

By the explicit representation formula of the minimizer of HR ε
2
,

ε min
Γ(µ0,µ1)

HR ε
2

= HR ε
2
(f ε ⊗ gεR ε

2
) =
ˆ
φε0ϱ0dLn +

ˆ
ψε1ϱ1dLn,

the result follows.

(5.32) Proposition For every ε > 0, one has

ε min
Γ(µ0,µ1)

HR ε
2

= εH(µ0 | Ln) + 1
2

ˆ ˆ 1

0
|Dψεt |2ϱεtdtdLn.
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Proof. Let us observe that, using the very definition of ϑεt in the continuity equation
solved by ϱεt ,

∂ϱεt
∂t

+ 1
2div(ϱεtDψεt ) = 1

2div(ϱεtDφεt).

Now, using the fact that φεt + ψεt = ε log ϱεt ,

∂ϱεt
∂t

+ 1
2div(ϱεtDψεt ) = ε

2div(ϱεtD log ϱεt) − 1
2div(ϱεtDψεt ),

then we obtain the forward Fokker–Planck equation

∂ϱεt
∂t

+ div(ϱεtDψεt ) = ε

2∆ϱεt .

Arguing in the same way as for Proposition (5.30), we can then find
ˆ
φε1dµ1 −

ˆ
φε1dµ0 = −1

2

ˆ ˆ 1

0
|Dφεt |2ϱεtdtdLn,

that can be rewritten, using the identity φε0+ψε0 = ϱ log ϱ0 and the explicit representation
formula of the minimizer of HR ε

2
, as

ε min
Γ(µ0,µ1)

HR ε
2

= εH(µ0 | Ln) + 1
2

ˆ ˆ 1

0
|Dψεt |2ϱεtdtdLn.

(5.33) Proposition For every ε > 0, one has

ε min
Γ(µ0,µ1)

HR ε
2

= εH(µ1 | Ln) + 1
2

ˆ ˆ 1

0
|Dφεt |2ϱεtdtdLn.

Proof. Let us observe that, using the very definition of ϑεt in the continuity equation
solved by ϱεt ,

∂ϱεt
∂t

− 1
2div(ϱεtDφεt) = −1

2div(ϱεtDψεt ).

Now, using the fact that φεt + ψεt = ε log ϱεt ,

∂ϱεt
∂t

− 1
2div(ϱεtDψεt ) = −ε

2div(ϱεtD log ϱεt) + 1
2div(ϱεtDφεt),

then we obtain the forward Fokker–Planck equation

− ∂

∂t
ϱεt + div(ϱεtDφεt) = ε

2∆ϱεt .
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Arguing in the same way as for Proposition (5.30), we can then find
ˆ
φε1dµ1 −

ˆ
φε1dµ0 = −1

2

ˆ ˆ 1

0
|Dφεt |2ϱεtdtdLn

that can be rewritten, using the identity φε0+ψε0 = ϱ log ϱ0 and the explicit representation
formula of the minimizer of HR ε

2
, as

ε min
Γ(µ0,µ1)

HR ε
2

= εH(µ1 | Ln) + 1
2

ˆ ˆ 1

0
|Dφεt |2ϱεtdtdLn.

We are now ready for the main result of the section: the Benamou–Brenier formula
for the Schrödinger problem. By the fact that we can dynamically represent the problem
in three different ways using the continuity equation or the two Fokker–Planck equations,
we obtain also three different Benamou–Brenier formulas. As regards the first form,
inequality ≥ follows directly from Proposition (5.30) and the fact that ϱεt solves the
continuity equation with velocity Dϑεt . The converse inequality can instead be proved
using a technique similar to the one seen for Proposition (5.30).

(5.34) Theorem (Benamou–Brenier formula, I form) For every ε > 0, one has

ε min
Γ(µ0,µ1)

HR ε
2

= ε

2 (H(µ0 | Ln) +H(µ1 | Ln)) +

+ min
(ηtLn,vt) continuity pair,

η0=ϱ0,η1=ϱ1

{ˆ ˆ 1

0

(
1
2 |vt|2 + ε2

8 |D log ηt|2
)
ηtdtdLn

}
.

In particular, on the right-hand side, the (unique) minimizer is (ϱεt , Dϑεt).

Proof. Let us start proving that

ε min
Γ(µ0,µ1)

HR ε
2

≥ ε

2 (H(µ0 | Ln) +H(µ1 | Ln)) +

+ inf
(ηtLn,vt) continuity pair,

η0=ϱ0,η1=ϱ1

{ˆ ˆ 1

0

(
1
2 |vt|2 + ε2

8 |D log ηt|2
)
ηtdtdLn

}
.

By Proposition (5.30), we know that

ε min
Γ(µ0,µ1)

HR ε
2

= ε

2 (H(µ0 | Ln) +H(µ1 | Ln)) +

+
ˆ ˆ 1

0

(
1
2 |Dϑεt |2 + ε2

8 |D log ϱεt |2
)
ϱεtdtdLn,
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but, using Lemma (5.27), we can also say that (ϱεtLn, Dϑεt) is a continuity pair. In
particular, we can pass to the infimum on the right-hand side, obtaining the desired
inequality.

For the converse inequality, namely

ε min
Γ(µ0,µ1)

HR ε
2

≤ ε

2 (H(µ0 | Ln) +H(µ1 | Ln)) +

+ inf
(ηtLn,vt) continuity pair,

η0=ϱ0,η1=ϱ1

{ˆ ˆ 1

0

(
1
2 |vt|2 + ε2

8 |D log ηt|2
)
ηtdtdLn

}
,

we can, first of all, observe that the assumptions on µ0,µ1 guarantee the finiteness of
min

Γ(µ0,µ1)
HR ε

2
. In particular, if

inf
(ηtLn,vt) continuity pair,

η0=ϱ0,η1=ϱ1

{ˆ ˆ 1

0

(
1
2 |vt|2 + ε2

8 |D log ηt|2
)
ηtdtdLn

}
= +∞,

the inequality is trivially satisfied. Let us, then, focus on the case

inf
(ηtLn,vt) continuity pair,

η0=ϱ0,η1=ϱ1

{ˆ ˆ 1

0

(
1
2 |vt|2 + ε2

8 |D log ηt|2
)
ηtdtdLn

}
< +∞.

We can then restrict to the case where (ηtLn, vt) is a continuity pair with η0 = ϱ0, η1 = ϱ1

and

(5.35)
ˆ ˆ 1

0

(
1
2 |vt|2 + ε2

8 |D log ηt|2
)
ηtdtdLn < +∞.

Consider R > 0 and a cut-off function ζ ∈ C∞
c (B(0, R + 1)) such that 0 ≤ ζ ≤ 1 and

ζ = 1 on B(0, R). Given δ > 0, define for every t ∈ [0, 1]

φε,δt = ε log(f εt + δ), ψε,δt = ε log(gεt + δ), ϑε,δt = 1
2
(
ψε,δt − φε,δt

)
.

By Lemma (5.29), ζϑε,δt ∈ ACloc(]0, 1[ , L2(Rn)) ∩ L∞
loc(]0, 1[ , H1(Rn)), so, given t0, t1 ∈

]0, 1[, with t0 < t1, Lemma (5.5), applied to (ηtLn, vt) and the function
{
t 7−→ ζϑε,δt

}
on [t0, t1], gave us for a.e. t ∈ [t0, t1]

d

ds

(ˆ
ζϑε,δs ηsdLn

)
|s=t =

ˆ
ζ
d

dt
ϑε,δt ηtdLn + d

ds

(ˆ
ζϑε,δt ηsdLn

)
|s=t.

As regards the first term in the right-hand side, by the very definition of ϑε,δt and a
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linear transformation in Lemma (5.27),
ˆ
ζ
d

dt
ϑε,δt ηtdLn = 1

2

ˆ
ζ
d

dt
ψε,δt ηtdLn − 1

2

ˆ
ζ
d

dt
φε,δs ηtdLn =

= −1
2

ˆ
ζ
(1

2 |Dψε,δt |2 + ε

2∆ψε,δt
)
ηtdLn+

− 1
2

ˆ
ζ
(1

2 |Dφε,δt |2 + ε

2∆φε,δt
)
ηtdLn,

and, using the Gauss–Green formula, with the fact that Rn has no boundary, combined
with Young’s inequality and the triangle inequality,
ˆ
ζ

(
d

ds
ϑε,δs

)
|s=tηtdLn = −1

4

ˆ
ζ
(
|Dψε,δt |2 + |Dφε,δt |2

)
ηtdLn+

+ ε

4

ˆ
ζD(ψε,δt + φε,δt ) ·D log ηtηtdLn+

+ ε

4

ˆ
D(ψε,δt + φε,δt ) ·DζηtdLn ≤

≤ −1
4

ˆ
ζ
(
|Dψε,δt |2 + |Dφε,δt |2

)
ηtdLn+

+ 1
8

ˆ
ζ|D(ψε,δt + φε,δt )|2ηtdLn + ε2

8

ˆ
ζ|D log ηt|2ηtdLn+

+ ε

4

ˆ
D(ψε,δt + φε,δt ) ·DζηtdLn ≤

≤ −1
8

ˆ
ζ
(
|Dψε,δt |2 + |Dφε,δt |2

)
ηtdLn+

+ ε2

8

ˆ
ζ|D log ηt|2ηtdLn+

+ ε

4

ˆ
D(ψε,δt + φε,δt ) ·DζηtdLn.

For the second term, instead, using Proposition (5.3), combined with the fact that
ζϑε,δt ∈ H1(Rn), the density of C∞

c (B(0, R+1)) in H1(B(0, R+1)) (see [24], for example,
for technical details), weighted Young’s inequality and the triangle inequality,

d

ds

(ˆ
ζϑε,δt ηsdLn

)
|s=t = 1

2

ˆ (
ζD(ψε,δt − φε,δt ) · vt + (ψε,δt − φε,δt )Dζ · vt

)
ηtdLn ≤

≤ 1
8

ˆ
ζ|D(ψε,δt − φε,δt )|2ηtdLn + 1

2

ˆ
ζ|vt|2ηtdLn+

+ 1
2

ˆ
ζ(ψε,δt − φε,δt )Dζ · vtηtdLn ≤

≤ 1
8

ˆ
ζ
(
|Dψε,δt |2 + |Dφε,δt |2

)
ηtdLn + 1

2

ˆ
ζ|vt|2ηtdLn+
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+ 1
2

ˆ
ζ(ψε,δt − φε,δt )Dζ · vtηtdLn.

Resuming,

d

ds

(ˆ
ζϑε,δs ηsdLn

)
|s=t ≤

ˆ
ζ

(
1
2 |vt|2 + ε2

8 |D log ηt|2
)
ηtdLn+

+ ε

4

ˆ
D(ψε,δt + φε,δt ) ·DζηtdLn+

+ 1
2

ˆ
ζ(ψε,δt − φε,δt )Dζ · vtηtdLn.

Integrating both sides over [t0, t1], we get
ˆ
ζϑε,δt1 ηt1dL

n −
ˆ
ζϑε,δt0 ηt0dL

n ≤
ˆ ˆ t1

t0

ζ

(
1
2 |vt|2 + ε2

8 |D log ηt|2
)
ηtdtdLn+

+ ε

4

ˆ ˆ t1

t0

D(ψε,δt + φε,δt ) ·DζηtdtdLn+

+ 1
2

ˆ ˆ t1

t0

ζ(ψε,δt − φε,δt )Dζ · vtηtdtdLn.

Now, we want to pass to the limit as R → +∞. As regards the first term in the
right-hand sides, we can use, by monotonicity, the monotone convergence Theorem and
for the others we have to combine Lemma (5.29), (5.35) and the dominated convergence
Theorem. We get

ˆ
ϑε,δt1 ηt1dL

n −
ˆ
ϑε,δt0 ηt0dL

n ≤
ˆ ˆ t1

t0

(
1
2 |vt|2 + ε2

8 |D log ηt|2
)
ηtdtdLn.

Let us now pass to the limit as t0 → 0+. As regards the right-hand side, we can use, by
monotonicity, the monotone convergence Theorem. For the second term in the left-hand
side, we can, firstly, observe that

ˆ
ϑε,δt0 ηt0dL

n = 1
2

(ˆ
ψε,δt0 ηt0dL

n −
ˆ
φε,δt0 ηt0dL

n

)
.

Let us show that
lim
t0→0+

ˆ
ψε,δt0 ηt0dL

n =
ˆ
ψε,δ0 dµ0.

Using the triangle inequality,∣∣∣∣∣
ˆ
ψε,δt0 ηt0dL

n −
ˆ
ψε,δ0 dµ0

∣∣∣∣∣ ≤
ˆ ∣∣∣ψε,δt0 ηt0 − ψε,δ0

∣∣∣ηt0dLn +
∣∣∣∣∣
ˆ
ψε,δ0 ηt0dLn −

ˆ
ψε,δ0 dµ0

∣∣∣∣∣.



132 CHAPTER 5. BENAMOU–BRENIER FORMULAS

By the fact that
sup

x∈]δ,+∞[

∣∣∣∣1x
∣∣∣∣ ≤ 1

δ
,

we have that log ∈ Lip(]δ,+∞[), with Lipschitz constant Lip(log |]δ,+∞[) ≤ 1
δ
. By (5.24),

ηt ≤ C for every t ∈ [0, 1] so, combined with the fact that ηt0Ln ∈ P(Rn) and Hölder’s
inequality,∣∣∣∣∣
ˆ
ψε,δt0 ηt0dL

n −
ˆ
ψε,δ0 dµ0

∣∣∣∣∣ ≤ ε

ˆ ∣∣∣log(gεt0 + δ) − log(gε0 + δ)
∣∣∣ηt0dLn+

+
∣∣∣∣∣
ˆ
ψε,δ0 ηt0dLn −

ˆ
ψε,δ0 dµ0

∣∣∣∣∣ ≤

≤ ε

δ

ˆ
|gεt0 − gε0|ηt0dLn +

∣∣∣∣∣
ˆ
ψε,δ0 ηt0dLn −

ˆ
ψε,δ0 dµ0

∣∣∣∣∣ ≤

≤ |gεt0 − gε0|2ηt0dLn+

+
∣∣∣∣∣
ˆ
ψε,δ0 ηt0dLn −

ˆ
ψε,δ0 dµ0

∣∣∣∣∣ ≤

≤ ε

δ
C∥gεt0 − gε0∥L2(Rn) +

∣∣∣∣∣
ˆ
ψε,δ0 ηt0dLn −

ˆ
ψε,δ0 dµ0

∣∣∣∣∣
so, using the fact that {t 7−→ gεt} is continuous with respect to L2 norm, the first term
in the right-hand side disappears in the limit as t0 → 0+. As regards the second, using
the maximum principle and the regularity of the solution of the heat equation (see, for
example, [24]), by the fact that gε ∈ L∞(Rn) and it has compact support, we can state
that gε0 ∈ Cb(Rn). In particular, ψε,δ0 ∈ Cb(Rn), so, by weak continuity of ηtLn, also this
term vanishes. Let us also show that

lim
t0→0+

ˆ
φε,δt0 ηt0dL

n =
ˆ
φε,δ0 dµ0.

Using again the triangle inequality,∣∣∣∣∣
ˆ
φε,δt0 ηt0dL

n −
ˆ
φε,δ0 dµ0

∣∣∣∣∣ ≤
ˆ ∣∣∣φε,δt0 ηt0 − φε,δ0

∣∣∣ηt0dLn +
∣∣∣∣∣
ˆ
φε,δ0 ηt0dLn −

ˆ
φε,δ0 dµ0

∣∣∣∣∣.
For the first term in the right-hand side, we can argue analogously to the previous
estimate. As regards the second, by the fact that f ε has compact support, φε,δ0 is
constant outside a bounded set: in particular, for every α > 0, there exists q ∈ Cb(Rn)
such that

∥φε,δ0 − q∥L1(Rn) < α.



4. SCHRÖDINGER PROBLEM 133

A B C

Figure 5.1: A representation of the density argument in dimension 1. We only have to
consider a piecewise function q defined as follows: unless we take B large enough, there
we can use the density of C∞

c (B) in L1(B); in zones A and C we can take the (constant)
value that φε,δ0 have, so ε log δ.

These facts, combined with ηt ≤ C for all t ∈ [0, 1], that comes again from (5.24),
provide∣∣∣∣∣
ˆ
φε,δt0 ηt0dL

n −
ˆ
φε,δ0 dµ0

∣∣∣∣∣ ≤ ε

δ
C∥f εt0 − f ε0 ∥L2(Rn)+

+
ˆ

|φε,δ0 − q|ηt0dLn +
∣∣∣∣∣
ˆ
qηt0dLn −

ˆ
qdµ0

∣∣∣∣∣+
+
ˆ

|φε,δ0 − q|dµ0 ≤

≤ ε

δ
C∥f εt0 − f ε0 ∥L2(Rn) + 2Cα+

∣∣∣∣∣
ˆ
qηt0dLn −

ˆ
qdµ0

∣∣∣∣∣.
Using the continuity of {t 7−→ f εt } with respect to L2 norm, weak continuity of ηtLn

and letting α → 0+, we arrive at the conclusion. Resuming, we have

lim
t0→0+

ˆ
ϑε,δt0 ηt0dL

n =
ˆ
ϑε,δ0 dµ0,

so ˆ
ϑε,δt1 ηt1dL

n −
ˆ
ϑε,δ0 dµ0 ≤

ˆ ˆ t1

0

(
1
2 |vt|2 + ε2

8 |D log ηt|2
)
ηtdtdLn.

The limit t1 → 1− is completely analogous and provides
ˆ
ϑε,δ1 dµ1 −

ˆ
ϑε,δ0 dµ0 ≤

ˆ ˆ 1

0

(
1
2 |vt|2 + ε2

8 |D log ηt|2
)
ηtdtdLn.

Now, ˆ
ϑε,δ1 dµ1 =

ˆ
ψε,δ1 dµ1 − ε

2

ˆ
log ((f ε1 + δ)(gε1 + δ)) dµ1,
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so, passing to the limit as δ → 0+, by monotonicity, we get

lim
δ→0+

ˆ
ϑε,δ1 dµ1 =

ˆ
ψε1dµ1 − ε

2H(µ1|Ln),

where both terms in the right-hand side are finite: the second by the assumption on ϱ1

and the first by the fact that
ˆ
ψε1dµ1 = εH(µ1|Ln) −

ˆ
φε1dµ1

and φε1ϱ1 ∈ L1(Rn) by Lemma (5.28). Analogous considerations can be made for
ˆ
ϑε,δ0 dµ0,

so
ˆ
ψε1dµ1 +

ˆ
φε0dµ0 ≤ ε

2 (H(µ0 | Ln) +H(µ1 | Ln)) +

+
ˆ ˆ 1

0

(
1
2 |vt|2 + ε2

8 |D log ηt|2
)
ηtdtdLn,

By the explicit representation formula of the minimizer of HR ε
2

and passing to the
infimum over (ηtLn, vt) we get the desired inequality.

Combining the two inequalities proved with Proposition (5.30), we get the first part
of the statement.

Let us now tackle the second part of the statement, namely that the problem

min
(ηtLn,vt) continuity pair,

η0=ϱ0,η1=ϱ1

{ˆ ˆ 1

0

(
1
2 |vt|2 + ε2

8 |D log ηt|2
)
ηtdtdLn

}

has a unique minimizer (ϱεt , Dϑεt). Consider the convex set

Γ = {(ηtLn,mt) = (ηtLn, ηtvt) : (ηtLn, vt)is a continuity pair, η0 = ϱ0, η1 = ϱ1}

and the convex and lower semicontinuous function Φ : [0,+∞] ×R → [0,+∞] such that

Φ(x, y) =


y2

x
if x > 0,

0 if (x, y) = (0, 0),

+∞ otherwise.
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1
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0
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y

Figure 5.2: The graph of the function f(x, y) = y2

x
for x > 0.

In particular, the functionals H,F ,A : Γ → [0,+∞] such that

H(ηt,mt) = 1
2

ˆ ˆ 1

0

|mt|2

ηt
dtdLn,

F(ηt,mt) =


ε2

8

ˆ ˆ 1

0

|Dηt|2

ηt
dtdLn if ηt ∈ H1

loc(Rn),

+∞ otherwise,

A = H + F ,

are convex too. Thus, if (ηt, vt) is a minimizer of

min
(ηtLn,vt) continuity pair,

η0=ϱ0,η1=ϱ1

{ˆ ˆ 1

0

(
1
2 |vt|2 + ε2

8 |D log ηt|2
)
ηtdtdLn

}
,

setting mt = ηtvt, by Proposition (5.30), A(ηt,mt) = A(ϱεt , ϱεtDϑεt) so, using the
convexity of A, given λ ∈ ]0, 1[ and setting

ηλt = (1 − λ)ηt + λϱεt , mλ
t = (1 − λ)mt + λϱεtDϑ

ε
t ,

we get
A(ηλt ,mλ

t ) = (1 − λ)A(ηt,mt) + λA(ϱεt , ϱεtDϑεt).

The same identity holds for F , because of the convexity of H and F , then

Φ(ηλt ,mλ
t ) = (1 − λ)Φ(ηt,mt) + λΦ(ϱεt , ϱεtDϑεt).
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By the fact that Φ is linear only on the lines passing through the origin, there must
exist, for all t ∈ ]0, 1[ and for a.e. x ∈ X, αt(x) such that

(ηt, |Dηt|) = αt(ϱεt , |Dϱεt |).

Since ϱεt > 0, it must be αt(x) ≥ 0. Observing that

ηt = ηt
ϱεt
ϱεt ,

it must be
αt = ηt

ϱεt
.

In particular, by the fact that ϱεt ∈ H1(Rn), and it is locally bounded away from 0, and
ηt ∈ H1

loc(Rn) for a.e. t ∈ ]0, 1], then αt ∈ H1
loc(Rn) for a.e. t ∈ ]0, 1]. In a similar way,

we also obtain
(ηλt , |Dηλt |) = ((1 − λ)αt + λ)(ϱεt , |Dϱεt |).

In particular,

|Dηλt |2 = ((1−λ)αt+λ)2|Dϱεt |2 +(1−λ)2(ϱεt)2|Dαt|2 +2(1−λ)((1−λ)αt+λ)ϱεtDϱεt ·Dαt.

Resuming, for every λ ∈ ]0, 1[

|Dαt|2 = −2
(
αt + λ

1 − λ

)
D log ϱεt ·Dαt.

By the fact that αt does not depend on λ, it must be |Dαt|2 = 0, then we can say that
αt is constant. Since ηtLn, ϱεtLn ∈ P(Rn), it must be αt = 1, namely for every t ∈ [0, 1]
we have ηt = ϱεt . The conclusion follows now from the strict convexity of the function{
vt 7−→

´ ´ 1
0 |vt|2ϱεtdtdLn

}
.

(5.36) Theorem (Benamou–Brenier formula, II form) For every ε > 0, one has

ε min
Γ(µ0,µ1)

HR ε
2

= εH(µ0 | Ln)+

+ 1
2 min

{ˆ 1

0

ˆ
|vt|2dνtdt : ∂νt

∂t
+ div(vtνt) = ε

2∆νt, ν0 = µ0, ν1 = µ1

}
.

In particular, on the right-hand side, the (unique) minimizer is (ϱεtLn, Dψεt ).

Proof. It is a matter of replacing Proposition (5.30) with Proposition (5.32) in the proof
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of the first form.

(5.37) Theorem (Benamou–Brenier formula, III form) For every ε > 0, one has

ε min
Γ(µ0,µ1)

HR ε
2

= εH(µ1 | Ln)+

+ 1
2 min

{ˆ 1

0

ˆ
|vt|2dνtdt : −∂νt

∂t
+ div(vtνt) = ε

2∆νt, ν0 = µ0, ν1 = µ1

}
.

In particular, on the right-hand side, the (unique) minimizer is (ϱεtLn, Dφεt).

Proof. It is sufficient to swap µ0 and µ1 in the second form of the Benamou–Brenier
formula.

5 Comparison

Using the Benamou–Brenier formulas, we can provide a different point of view
to show the connection between the optimal transport problem and the Schrödinger
problem. If we compare, for example, the statement of the Benamou–Brenier formula
for optimal transport and the first form of the analogous formula for the Schrödinger
problem, namely

min
Γ(µ,ν)

C = min
{ˆ 1

0

ˆ
|vt|2dµtdt : (µt, vt) continuity pair, µt : [0, 1] → P2(Rn)

}

ε min
Γ(µ0,µ1)

HR ε
2

= ε

2 (H(µ0 | Ln) +H(µ1 | Ln)) +

+ min
(ηtLn,vt) continuity pair,

η0=ϱ0,η1=ϱ1

{ˆ ˆ 1

0

(
1
2 |vt|2 + ε2

8 |D log ηt|2
)
ηtdtdLn

}
.

we again can state, formally, that in the limit as ε → 0, from the Schrödinger problem
we pass to the optimal transport problem. It is another piece of evidence of the fact
that the Schrödinger problem is a regularized version of the optimal transport one.
Analogous considerations can be made with the other two forms of the Benamou–Brenier
formula for the Schrödinger problem leading to the same evidence.

It is interesting to note that using the Benamou–Brenier formulas, the comparison
can be made without further calculations, while, instead, using the primal formulations
of the two problems, it was required to expand the entropy functional.





Chapter 6

Semigroup representations

Also in this chapter, we will consider, as an environment, Rn equipped with the
Euclidean distance.

1 Hamilton–Jacobi equation and viscosity solution

The formulation of classical mechanics closest to quantum mechanics is written using
the Hamilton–Jacobi equation, in which the motion of a particle is represented as a
wave. For our purposes, the problem can be defined as follows.

(6.1) Definition Consider g ∈ Lip(Rn). We say that u is a classical solution of the
initial-value problem for the Hamilton–Jacobi equation, namely


∂u
∂t

− 1
2 |Du|2 = 0 in Rn × ]0,+∞[ ,

u = g on Rn × {0} ,

if u ∈ C1(Rn × ]0,+∞[) ∩ C(Rn × [0,+∞[), ∂u
∂t

(x, t) − 1
2 |Du|2(x, t) = 0 for every

(x, t) ∈ Rn × ]0,+∞[ and u(x, 0) = g(x) for every x ∈ Rn.

Further mechanical information can be found, for example, in [30] or in [60]. From a
mathematical point of view, however, which is what interests us most, the Hamilton–
Jacobi equation appears when we are interested in describing generalizations of the
problems of the Calculus of Variations: see, for example, [33].

We are interested in particular "weak" solutions of the previous initial-value problem,
namely viscosity solutions.

(6.2) Definition Consider g ∈ Lip(Rn). We say that u is a viscosity solution of the

139
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initial-value problem for the Hamilton–Jacobi equation, namely

∂u
∂t

− 1
2 |Du|2 = 0 in Rn × ]0,+∞[ ,

u = g on Rn × {0} ,

if u(x, 0) = g(x) for every x ∈ Rn and for every v ∈ C∞(Rn × ]0,+∞[) the following
facts hold true:

(i) if (x0, t0) ∈ Rn × ]0,+∞[ is a local maximum point for u− v, then

∂u

∂t
(x0, t0) − 1

2 |Du|2(x0, t0) ≤ 0,

(ii) if (x0, t0) ∈ Rn × ]0,+∞[ is a local minimum point for u− v, then

∂u

∂t
(x0, t0) − 1

2 |Du|2(x0, t0) ≥ 0.

The construction of this last definition and its consistency can be found in [24].

(6.3) Theorem Consider g ∈ Lip(Rn). There exists at most one viscosity solution of
the initial-value problem for the Hamilton–Jacobi equation, namely


∂u
∂t

− 1
2 |Du|2 = 0 in Rn × ]0,+∞[ ,

u = g on Rn × {0} .

Proof. See [24].

Further information on the Hamilton–Jacobi equation and viscosity solution can be
found, for example, in [7] or [22].

2 Hopf–Lax semigroup and optimal transport

The aim of this section is to determine a pair of Kantorovich potentials for the
optimal transport problem along geodesics. The first, and most important, ingredient
we need is the Hopf–Lax semigroup.

(6.4) Definition We call Hopf–Lax semigroup the family of operators Qt : Cb(Rn) → R,
t ∈ [0,+∞], such that for every f ∈ Cb(Rn) and x ∈ Rn

Q0f(x) = f(x)
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and, for t > 0,
Qtf(x) = inf

y∈Rn

{
f(y) + 1

2t |x− y|2
}
.

Through the Hopf–Lax semigroup, it is possible to find a representation formula for
the viscosity solution of the initial-value problem for the Hamilton–Jacobi equation.

(6.5) Theorem Consider g ∈ Lip(Rn) bounded. The unique viscosity solution of the
initial-value problem for the Hamilton–Jacobi equation, namely


∂u
∂t

− 1
2 |Du|2 = 0 in Rn × ]0,+∞[ ,

u = g on Rn × {0} ,

is given by
u(x, t) = Qtg(x).

Proof. See [24].

Other properties of the Hopf–Lax semigroup can be found in the Appendix.
We have seen in Proposition (5.4) that if µ0, µ1 ∈ P2(Rn), with µ0 ≪ Ln, and µt is

the geodesic connecting µ0 and µ1, then (µt, vt), with

vt = (T − Id) ◦ T−1
t = Id − T−1

t

t
,

where T is the unique, up to µ0-negligible sets, minimizer for the problem

min
{ˆ

Rn

1
2 |x− T (x)|2dµ0(x) : T : Rn → Rn Borel, T#µ0 = µ1

}
,

and Tt = (1 − t)Id + tT , is a continuity pair. In particular, µt = (Tt)#µ0. Fix, now
t ∈ [0,+∞[ and consider (φt, ψt), Kantorovich potential for µ0, µt, whose existence
follows from Kantorovich–Rubinstein duality. In accordance with Theorem (3.10) and
Theorem (3.11),

Tt(x) = Dψt(x) = −D(−ψt(x) + 1
2 |x|2) + 1

2D|x|2

but φt(x) = −ψt(x) + 1
2 |x|2 so

Tt = Id −Dφt.

In particular,
Id −Dφt = Tt = (1 − t)Id + t(Id −Dφ)
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so
Dφt = tDφ,

then a good choice might be φt(x) = tφ(x) and

ψt(x) = inf
y∈Rn

{
−tφ(x) + 1

2 |x− y|2
}
.

We will show, as reported in [1], that this informal reasoning is correct. To do this, we
need, first of all, an elementary inequality.

(6.6) Proposition Let a, b ∈ R and s, t > 0. It holds

a2

s
+ b2

t
≥ (a+ b)2

s+ t
.

In particular, the equality holds if and only if at = bs.

Proof. By the Cauchy–Schwarz inequality

∀(ξ, η), (ν, σ) ∈ R × R : [(ξ, η) · (ν, σ)]2 ≤ (ξ2 + η2)(ν2 + σ2).

Choose ξ = a√
s
, η = b√

t
, ν =

√
s and σ =

√
t to obtain

(a+ b)2 ≤
(
a2

s
+ b2

t

)
(s+ t)

or in other words
a2

s
+ b2

t
≥ (a+ b)2

s+ t
.

Remembering that the Cauchy–Schwarz inequality holds as an equality if and only if
the vectors are linearly dependent, we get the second part of the statement.

We are therefore ready to show that our informal reasoning is indeed correct. Let
us just point out that we already know, from Kantorovich–Rubinstein duality and the
very definition of c–conjugate, that (φ,Q1(−φ)) is a pair of Kantorovich potentials from
µ0 to µ1. The goal of the proof is, indeed, to prove that the representation is true for
every time along the geodesic connecting µ0 to µ1. Following the idea in [1], we will use
the dynamical representation of the optimal transport problem to be able to apply the
previous elementary inequality.

(6.7) Theorem Let µ0, µ1 ∈ P2(Rn), with µ0 ≪ Ln, and (φ,Q1(−φ)) be a pair of
Kantorovich potentials from µ0 to µ1. Then, given µt the geodesic connecting µ0 and µ1,
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for all t ∈ [0, 1]
(tφ, tQt(−φ))

is a pair of Kantorovich potentials from µ0 to µt.

Proof. The case t = 0 is trivial. We then focus on the case t ∈ ]0, 1]. By definition of
the Hopf–Lax semigroup, for every x, y ∈ Rn

tφ(x) +Q1(−tφ)(y) ≤ 1
2 |x− y|2,

so (tφ,Q1(−tφ)) is admissible. By Theorem (4.3), there exists η ∈ OptGeo(µ0, µt) such
that Σ = (e0, et)#η ∈ Γ(µ0, µt) is optimal. We only need to prove that

(6.8) Σ-a.e. (x, y) ∈ Rn × Rn : tφ(x) +Q1(−tφ)(y) ≥ 1
2 |x− y|2.

First of all, (6.8) is equivalent to

(6.9) η-a.e. γ ∈ Geo(Rn) : tφ(γ(0)) +Q1(−tφ)(γ(t)) ≥ 1
2 |γ(0) − γ(1)|2.

Now, by the optimality of (φ,Q1(−φ)),

(6.10) η-a.e. γ ∈ Geo(Rn) : tφ(γ(0)) +Q1(−tφ)(γ(1)) = 1
2 |γ(0) − γ(1)|2,

so we only need to prove (6.9) for intermediate points, namely if x = γ(0) and y = γ(1),
we need to prove

(6.11) η-a.e. γ ∈ Geo(Rn) : φ(x) +Qt(−φ)(z) ≥ 1
2t |x− z|2

for z = γ(t) ∈ Rn such that |x− z| = td|x− y| and |z − y| = (1 − t)|x− y|. Observing
that

φ(x) +Qt(−φ)(z) = φ(x) + inf
w∈Rn

{
−φ(w) + 1

2t |w − z|2
}

=

= inf
w∈Rn

{
φ(x) − φ(w) + 1

2t |w − z|2
}
,

the definition of Hopf–Lax semigroup, combined with (6.9), gives us

φ(x) +Qt(−φ)(z) = inf
w∈Rn

{1
2 |x− y|2 −Q1(−φ)(y) − φ(w) + 1

2t |w − z|2
}

≥

≥ 1
2 |x− y|2 + inf

w∈Rn

{
−1

2 |w − y|2 + 1
2t |w − z|2

}
.
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In other words, to prove (6.11) it is sufficient to show

1
2 |x− y|2 + inf

w∈Rn

{
−1

2 |w − y|2 + 1
2t |w − z|2

}
≥ 1

2t |x− z|2,

that can be rewritten, using the properties of z, in the form

1
2(1 − t)2 |z − y|2 + inf

w∈Rn

{
−1

2 |w − y|2 + 1
2t |w − z|2

}
≥ 1

2(t− 1)2 |z − y|2

that is

(6.12) inf
w∈Rn

{
−1

2 |w − y|2 + 1
2t |w − z|2

}
≥ − 1

2(1 − t) |y − z|2.

By Proposition (6.6) and the triangle inequality, for every w ∈ Rn

|y − z|2

2(1 − t) + |w − z|2

2t ≥ |w − y|2

2 ,

then (6.12) follows and the proof is complete.

3 Hopf–Cole semigroup and Schrödinger problem

Replacing the Hopf–Lax semigroup with an analogous semigroup built through
the heat kernel, namely the Hopf–Cole semigroup, it is possible to provide a similar
semigroup representation also for the Schrödinger problem.

(6.13) Definition We call Hopf–Cole semigroup the family of operators Qt : Cb(Rn) →
R, t ∈ [0,+∞], such that for every f ∈ Cb(Rn) and x ∈ Rn

Q0f(x) = f(x)

and, for t > 0,

Qtf(x) = log
(ˆ

ef(y)rt(x, y)dLn(y)
)
.

In other words, a Kantorovich–Rubinstein duality holds also for the Schrödinger
problem. Following the approach reported in [27], we first need to consider the forward
(resp. backward) Hamilton–Jacobi–Bellman equation, namely given c > 0

∂u

∂t
− 1

2 |Du|2 = c∆u
(

resp. − ∂u

∂t
− 1

2 |Du|2 = c∆u
)
,
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for which we need a notion of supersolution.

(6.14) Definition Let T ∈ ]0,+∞[ and c > 0 and a function u : [0, T ] × Rn → R such
that, for every t ∈ [0, T ], the function ut : Rn → R such that

ut(x) = u(t, x)

is Borel. We say that u is a (strong) supersolution of the forward (resp. backward)
Hamilton–Jacobi–Bellman equation if the following facts hold true:

(i) there exists C > 0 such that for every t ∈ [0, T ]

∥ut∥L∞(Rn) ≤ C,

(ii) for every t ∈ [0, T ] ut ∈ D(∆loc) ⊆ H1(Rn),

(iii) the functions {t 7−→ |Dut|} and {t 7−→ ∆ut} belong to L∞(]0, T [ , L2(Rn)),

(iv) there exists x ∈ Rn and M > 0 such that the function {t 7−→ ut} belongs to
AC([0, T ], L2(Rn, e−V Ln)), where V (y) = |x− y|2, and for a.e. t ∈ [0, T ]

∂

∂t
u− 1

2 |Du|2 ≥ c∆u
(

resp. − ∂

∂t
u− 1

2 |Du|2 ≥ c∆u
)
.

Further information on the Hamilton–Jacobi–Bellman equation can be found, for
example, in [35] or [36].

As a preliminary result, already interesting by itself, we have the following Theorems,
whose proof relies on the technique used to prove the Benamou–Brenier formula for the
Schrödinger problem.

(6.15) Theorem Let c > 0. The following facts hold true:

(a) if φ : [0, 1] × Rn → R is a supersolution of the backward Hamilton–Jacobi–Bellman
equation and (νt, vt) is a forward Fokker–Planck pair, then

ˆ
φ1dν1 −

ˆ
φ0dν0 ≤ 1

2

ˆ 1

0

ˆ
|vt|2dνtdt,

(b) for any ε > 0

ε min
Γ(µ0,µ1)

HR ε
2

= εH(µ0 | Ln) + sup
{ˆ

φ1dµ1 −
ˆ
φ0dµ0 : φ : [0, 1] × Rn → R,
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supersolution of the backward Hamilton–Jacobi–Belmann equation
}
.

Proof.
(a) Fix φ : [0, 1] × Rn → R a supersolution of the backward Hamilton–Jacobi–Bellman
equation and (νt, vt) a forward Fokker–Planck pair. Consider R > 0 and a cut-off
function ζ ∈ C∞

c (B(0, R+ 1)) such that 0 ≤ ζ ≤ 1 and ζ = 1 on B(0, R). By the very
definition of a supersolution of the backward Hamilton–Jacobi–Bellman equation, the
function {t 7−→ ζφt} belongs to

AC([0, 1], L2(Rn)) ∩ L∞([0, 1], H1(Rn))

and the function {t 7−→ ∆(ζφt)} belongs to L∞([0, 1], L2(Rn)). In particular, by Lemma
(5.23), applied to (νt, vt) and to the function {t 7−→ ζφt}, for a.e. t ∈ [0, 1]

d

ds

( ˆ
ζφsdνs

)
|s=t =

ˆ
ζ

(
d

ds
φs

)
|s=tdνt + d

ds

(ˆ
ζφtdνs

)
|s=t.

For the first term in the right-hand side, using again the fact that φ is a supersolution
of the backward Hamilton–Jacobi–Bellman equation,

d

ds

(ˆ
ζφsdνs

)
|s=t ≤ −

ˆ
ζ
(1

2 |Dφt|2 + c∆φt
)
dνt

and as regards the second, using the fact that (νt, vt) is a forward Fokker–Planck pair
and ζφt ∈ D(∆) ⊆ H1(Rn), arguing by density and using Young’s inequality, we can
write

ˆ
ζ

(
d

ds
φs

)
|s=tdνt =

ˆ
(ζDφt · vt + φtDζ · vt) dνt+

+ c

ˆ
(ζ∆φt + 2Dζ ·Dφt + φt∆ζ) dνt ≤

≤
ˆ (

ζ
(1

2 |Dφt|2 + 1
2 |vt|2

)
+ φtDζ · vt

)
dνt+

+ c

ˆ
(ζ∆φt + 2Dζ ·Dφt + φt∆ζ) dνt.

Resuming,

d

ds

(ˆ
ζφsdνs

)
|s=t ≤ 1

2

ˆ
ζ|vt|2dνt +

ˆ
φtDζ · vtdνt + c

ˆ
(2Dζ ·Dφt + φt∆ζ) dνt.
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Integrating both sides in t over [0, 1], we get
ˆ
ζφ1dν1 −

ˆ
ζφ0dν0 ≤ 1

2

ˆ 1

0

ˆ
ζ|vt|2dνtdt+

+
ˆ 1

0

ˆ
φtDζ · vtdνtdt+ c

ˆ 1

0

ˆ
(2Dζ ·Dφt + φt∆ζ) dνtdt.

Passing through the limit as R → +∞, in the same way as in the proof of the first form
of the Benamou–Brenier formula for the Schrödinger problem, the inequality follows.

(b) Let us start proving the inequality

ε min
Γ(µ0,µ1)

HR ε
2

≥ εH(µ0 | Ln) + sup
{ˆ

φ1dµ1 −
ˆ
φ0dµ0 : φ : [0, 1] × Rn → R,

supersolution of the backward Hamilton–Jacobi–Belmann equation
}
.

By the second form of the Benamou–Brenier formula for the Schrödinger problem,

ε min
Γ(µ0,µ1)

HR ε
2

= εH(µ0 | Ln)+

+ 1
2 min

{ˆ 1

0

ˆ
|vt|2dνtdt : −∂νt

∂t
+ div(vtνt) = ε

2∆νt, ν0 = µ0, ν1 = µ1

}
,

so, by (a),

ε min
Γ(µ0,µ1)

HR ε
2

≥ εH(µ0 | Ln) +
ˆ
φ1dν1 −

ˆ
φ0dν0,

and passing to the supremum the inequality follows.

As concerns the ≤ inequality, given δ, s > 0, consider

φδ,st (x) = ε log
(ˆ

gε(y)r (1−t)ε
2 +s(x, y)dLn(y) + δ

)
.

By Lemma (5.29), φδ,s is a supersolution to the backward Hamilton–Jacobi–Bellman
equation on [0, 1], so
ˆ
φδ,s1 dµ1 −

ˆ
φδ,s0 dµ0 ≤ sup

{ˆ
φ1dµ1 −

ˆ
φ0dµ0 : φ : [0, 1] × Rn → R, supersolution

of the backward Hamilton–Jacobi–Belmann equation
}
.

Now, we want to pass to the limit as s → 0+: using the continuity of the function
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{
s 7−→ φδ,st

}
with respect to the L2(Rn, e−V Ln) norm, where V (y) = M |x − y|2, and

the compactness of the support of µ0, µ1, we get

lim
s→0+

ˆ
φδ,s0 dµ0 =

ˆ
ψε,δ0 dµ0, lim

s→0+

ˆ
φδ,s1 dµ1 =

ˆ
ψε,δ1 dµ1.

Arguing now in the same way as in the proof of the first form of the Benamou–Brenier
formula for the Schrödinger problem, passing through the limit as δ → 0+ we get
ˆ
ψε1dµ1 −

ˆ
ψε0dµ0 ≤ sup

{ˆ
φ1dµ1 −

ˆ
φ0dµ0 : φ : [0, 1] × Rn → R, supersolution

of the backward Hamilton–Jacobi–Belmann equation
}
.

Combining the previous inequality, the identity ψε0 = −φε0 + ε log ϱ0 and the explicit
representation formula of the minimizer of HR ε

2
, the desired inequality follows.

(6.16) Theorem Let c > 0. The following facts hold true:

(a) if φ : [0, 1] × Rn → R is a supersolution of the forward Hamilton–Jacobi–Bellman
equation and (νt, vt) is a backward Fokker–Planck pair, then

ˆ
φ0dν0 −

ˆ
φ1dν1 ≤ 1

2

ˆ 1

0

ˆ
|vt|2dνtdt,

(b) for any ε > 0

ε min
Γ(µ0,µ1)

HR ε
2

= εH(µ1 | Ln) + sup
{ˆ

φ0dµ0 −
ˆ
φ1dµ1 : φ : [0, 1] × Rn → R,

supersolution of the forward Hamilton–Jacobi–Belmann equation
}
.

Proof. It is a matter of reversing time and then using the same strategy as in the
previous Theorem.

The following are the main results of the section. Using the Hopf–Cole semigroup,
as said at the beginning of the section, we can provide a dual variational formula for the
Schrödinger problem. As regards the first results, following what is reported in [27], the
≤ inequality follows directly from the explicit representation formula for the minimizer
of the entropy. The converse inequality, instead, is a consequence of Theorem (6.15).
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(6.17) Theorem For any ε > 0,

ε min
Γ(µ0,µ1)

HR ε
2

= εH(µ0 | Ln) + sup
{ˆ

udµ1 −
ˆ
εQ ε

2

(
u

ε

)
dµ0 : u : R → R,

e
u
ε ∈ L2(Rn) ∩ L∞(Rn)

}
.

Proof. Observing that eφε
0 ∈ L2(Rn) ∩ L∞(Rn) and φε1 = εQ ε

2

(
φε

0
ε

)
, the inequality

ε min
Γ(µ0,µ1)

HR ε
2

≤ εH(µ0 | Ln) + sup
{ˆ

udµ1 −
ˆ
εQ ε

2

(
u

ε

)
dµ0 : u : R → R,

e
u
ε ∈ L2(Rn) ∩ L∞(Rn)

}

comes directly from the explicit representation formula for the minimizer of HR ε
2

and
the identity φε0 + ψε0 = ε log ϱ0.

As regards the converse inequality, consider δ, s > 0 and define for every t ∈ [0, 1]
and every u : Rn → R such that eu

ε ∈ L2(Rn) ∩ L∞(Rn)

Q
δ,s
εt
2

(
u

ε

)
(x) = log

(ˆ
e

u(y)
ε r εt

2 +s(x, y)dLn(y) + δ

)
.

By Lemma (5.29), the function
{
(t, x) 7−→ Q

δ,s
t u(x)

}
is a supersolution of the backward

Hamilton–Jacobi–Bellman equation, so, by Theorem (6.15),

ε min
Γ(µ0,µ1)

HR ε
2

≥ εH(µ0 | Ln) +
ˆ
εQ

δ,s
0

(
u

ε

)
dµ1 −

ˆ
εQ

δ,s
ε
2

(
u

ε

)
dµ0.

Passing through the limit as s → 0+ and δ → 0+, as in the proof of the first form of the
Benamou–Brenier formula for the Schrödinger problem, we get

ε min
Γ(µ0,µ1)

HR ε
2

≥ εH(µ0 | Ln) +
ˆ
udµ1 −

ˆ
εQ ε

2

(
u

ε

)
dµ0

and the conclusion comes passing to the supremum on u.

(6.18) Theorem For any ε > 0,

ε min
Γ(µ0,µ1)

HR ε
2

= εH(µ1 | Ln) + sup
{ˆ

udµ0 −
ˆ
εQ ε

2

(
u

ε

)
dµ1 : u : R → R,

e
u
ε ∈ L2(Rn) ∩ L∞(Rn)

}
.
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Proof. It is similar to the proof of the previous Theorem.

4 Comparison

Following what is reported in [44], we understand that the connection between the
optimal transport problem and the Schrödinger problem can also be read using the
Hopf–Lax semigroup and the Hopf–Cole semigroup. In other words, we can close the
circle open in Chapter 2 by establishing that the dual Schrödinger problem representation
via Hopf–Cole converges to the dual representation of the optimal transport problem
induced by the Kantorovich–Rubinstein duality.

By exploiting the connection between the optimal transport problem and the
Schrödinger problem, we can also establish duality relations among the differential
equations that allow their representation. First of all, being able to represent, by
the Benamou–Brenier formula, the optimal transport problem using the continuity
equation, we have understood that we can operate dually, representing the problem
using a differential equation, but replacing the previous one with the Hamilton–Jacobi
equation. Analogously, the same duality can also be established between the backward
(resp. forward) Fokker–Planck equation and the forward (resp. backward) Hamilton–
Jacobi–Bellman equation.



Further developments

On the Benamou-Brenier formula for the Schrödinger
problem

The assumptions contained in the Benamou-Brenier formula for the Schrödinger
problem do not all appear equally necessary. The boundedness of densities, required
to have finite entropy and to apply the regularization property of the heat kernel, is
important for the uniqueness of the solution and the regularity of the interpolating
potentials. On the other hand, the boundedness of the supports is required to have a
compact support property, so a question arises, namely

Is it possible to remove this last assumption?

The issue is not only theoretical: at the moment, indeed, the Benamou-Brenier formula
for the Schrödinger problem is not applicable to the case µ0, µ1 Gaussian. This is also
important in the application since, as we have already seen in Chapter 4, this is a class
of measure for which we can do explicit computations. The first next goal is then to try
to relax the hypotheses for the Benamou-Brenier formula for the Schrödinger problem
starting from the question posed. The hope of a positive result comes from the works of
Marcel Nutz and collaborators, for example [49], in which they study the Schrödinger
problem without any compactness assumption.

Functional inequalities

It is possible to apply the Schrödinger problem theory to the study of functional
inequalities. Some results have been obtained regarding the recovery of already known
functional inequalities or, at least in positive curvature, the improvement of them. As an
example, we can cite [17]: starting from the convexity inequality of the entropy written
along an entropic interpolation and deriving, the Author has managed to generalize the
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Talagrand inequality, namely

W 2
2 (ν, γ) ≤ 2H(ν|γ),

where ν ∈ P(M), with M an appropriate manifold, and γ is a standard Gaussian
measure, to the entropic case. He actually obtained a stochastic version of the Talagrand
inequality. This is useful because, for example, in a manifold with Ricci curvature
strictly positive, the stochastic Talagrand inequality is stronger than the classical one. A
possible way forward is then to apply these ideas to other notable functional inequalities,
such as the log-Sobolev inequality or the concentration inequality. Concerning this topic,
it is important to understand, also, if it is possible to obtain a dimensional improvement
for those functional inequalities that are dimension-free.

Unbalanced optimal transport

As we have specified in Chapter 1, we have focused on transport between measures
with the same mass. A possible generalization is then the unbalanced case, also called
unbalanced optimal transport. In particular, in [42], the Hellinger–Kantorovich distance
has been introduced as a generalization of the Wasserstein distance. Although, in [16],
this latter has been generalized to the case p ≠ 2, the theory, in its entirety, is not
actually developed like its balanced counterpart. The importance of deepening this
side of transport theory would open up a deeper understanding of unbalanced optimal
transport. Once the problem is sufficiently understood, it would be interesting to study
its entropic regularization: a static version (see [11]) and a dynamic version (see [6]) are
known, but in-depth studies regarding their connection are still lacking.

Multi-marginal and grand canonical problems

If in unbalanced optimal transport we move from marginals with the same mass
to unbalanced marginals, another possible way forward is to move beyond the idea of
having only two marginals. This idea leads to the so-called multi-marginal optimal
transport problem, ubiquitous in different disciplines such as economics (see, for example,
[13]), statistics (see, for example, [12]), image processing (see, for example, [57]) and
quantum physics and chemistry, in the framework of density functional theory (see, for
example, [10] or [18]). A precise definition of the problem can be given as follows.

(6.19) Definition Consider µ1, . . . , µℓ ∈ P(Rn) and a Borel function c : Rnℓ → [0,+∞].
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In the so-called multi-marginal optimal transport problem we look for

inf
{ˆ

cdπ : π ∈ Γ(µ1, . . . , µℓ)
}
,

where Γ(µ1, . . . , µℓ) =
{
π ∈ P(Rnℓ) : (pi)#π = µi, i = 1, . . . , ℓ

}
.

Of particular interest is the application to quantum chemistry: the problem models
the electron-electron repulsion, when the cost function is the Coulomb potential, namely

c(x1, . . . , xℓ) =
∑
i<j

1
|xi − xj|

,

and the marginals are all the electron density ρ. In this case, the problem leads to
considering the Lieb functional, namely

FL[ρ] = inf {tr(HℓΓ) : Γ ∈ S(H) self-adjoint, ρΓ = ρ} ,

where, S(H) is the space of bounded operators, on a well-chosen Hilbert space H, with
finite trace and Hℓ = −∆ +

∑
i<j

1
|xi − xj|

.

From the multi-marginal case, another direction for a generalization is then to remove
also the idea that the number of marginals must be deterministic. In this case we obtain
the so-called grand canonical optimal transport problem.

A first direction of study is to generalize the convergence rates of the entropic cost
established in [48] by substituting the signature conditions introduced in [55] with a
less restrictive assumption on the cost function, and by pushing Minty’s trick further to
obtain quadratic detachments as done in [14] and [48]. A second direction, which would
represent a major improvement also for the classical two marginals case, is to tackle
the question of the convergence of entropic plans in the entropic regularization of the
problem to the case in which there are several, possibly non-deterministic, unregularized
optimal plans.





Appendix A

Some properties of the Hopf–Lax
semigroup

In this Appendix we just want to collect the main properties of the Hopf–Lax
semigroup. The proof is an expansion of the ideas reported in [1]. We only consider, as
in Chapter 6, the Euclidean case. Further information, also in a more general setting,
can be found, for example, in [1], [2] or [20].

(1.1) Theorem Consider f ∈ Cb(Rn) and the function {(t, x) 7−→ Qtf(x)}. The
following facts hold true:

(a) for every t ∈ [0,+∞]
inf f ≤ Qtf ≤ f ≤ sup f,

(b) if t → 0, then Qtf(x) ↗ f(x) for every x ∈ Rn. In particular, if f is uniformly
continuous, then Qtf → f uniformly on Rn,

(c) for every ε > 0, {(t, x) 7−→ Qtf(x)} is Lipschitz on [ε,+∞[ × Rn,

(d) for a.e. x ∈ Rn and a.e. t ∈ ]0,+∞[ one has

d

dt
Qtf(x) + 1

2 |D (Qtf) (x)|2 = 0,

(e) if f is also Lipschitz, then {(t, x) 7−→ Qtf(x)} is Lipschitz on [0,+∞[ × Rn,

(f) for every (t, x) ∈ [0,+∞[ × Rn it holds

d+

dt
Qtf(x) + 1

2 |D∗ (Qtf)|2(x) ≤ 0,

155



156 APPENDIX A. SOME PROPERTIES OF THE HOPF–LAX SEMIGROUP

where
d+

dt
Qtf(x) = lim sup

h→0+

Qt+hf(x) −Qtf(x)
h

is the upper Dini derivative of Qtf and

|D∗ (Qtf)|(x) = lim
r→0

sup
y,z∈B(x,r)

y ̸=z

|Qtf(z) −Qtf(y)|
|z − y|

is the asymptotic Lipschitz constant of Qtf .

(g) {Qt}t≥0 is a semigroup.

Proof.
(a) It follows directly from the definition of Hopf–Lax semigroup and the properties of
infimum and supremum.
(b) Clearly, for every x ∈ Rn, if 0 ≤ t1 ≤ t2, then Qt2f(x) ≤ Qt1f(x) and, from (a),

sup
t≥0

Qtf(x) ≤ f(x).

Let us prove the converse inequality, namely sup
t≥0

Qtf(x) ≥ f(x). For every x ∈ Rn and

t > 0, given Rt =
√

2t(sup f − inf f), consider B(x,Rt). We have

inf
y∈B(x,Rt)

{
f(y) + 1

2t |x− y|2
}

≤ f(x) ≤ sup f

and

inf
y∈Rn\B(x,Rt)

{
f(y) + 1

2t |x− y|2
}

≥ inf
Rn\B(x,Rt)

f + inf
y∈Rn\B(x,Rt)

1
2t |x− y|2 ≥

≥ inf f + R2
t

2t = sup f,

so
inf

y∈Rn\B(x,Rt)

{
f(y) + 1

2t |x− y|2
}

≥ inf
y∈B(x,Rt)

{
f(y) + 1

2t |x− y|2
}
.

Observing that

Qtf(x) = min
{

inf
y∈B(x,Rt)

{
f(y) + 1

2t |x− y|2
}
, inf
y∈Rn\B(x,Rt)

{
f(y) + 1

2t |x− y|2
}}

,
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we get
Qtf(x) = inf

y∈B(x,Rt)

{
f(y) + 1

2t |x− y|2
}
.

At this point, using the positivity of distance,

Qtf(x) = inf
y∈B(x,Rt)

{
f(y) + 1

2t |x− y|2
}

≥ inf
y∈B(x,Rt)

f(y),

so
sup
t≥0

Qtf(x) ≥ sup
t≥0

inf
y∈B(x,Rt)

f(y).

Now, if 0 < t1 ≤ t2,
inf

y∈B(x,Rt2 )
f(y) ≤ inf

y∈B(x,Rt1 )
f(y)

and taken for every t > 0, xt ∈ B(x,Rt) such that

f(xt) ≤ inf
B(x,Rt)

f + t,

by the fact that for t → 0, Rt → 0 so xt → x, then, using the fact that f ∈ Cb(Rn),
f(xt) → f(x) so

sup
t≥0

inf
B(x,Rt)

f ≥ f(x).

By the fact that the converse inequality is obvious,

sup
t≥0

inf
B(x,Rt)

f = f(x).

In particular,
sup
t≥0

Qtf(x) = f(x).

Consider now f also uniformly continuous. Fixed ε > 0, there exists δ > 0 such that

∀ x, y ∈ Rn : |x− y| < δ =⇒ |f(x) − f(y)| < ε

2 =⇒ f(y) > f(x) − ε

2 .

Consider t ≥ 0 such that Rt < δ. For every t ≤ t we have Rt < Rt < δ and

∀ x, y ∈ Rn : |x− y| ≤ Rt =⇒ f(y) > f(x) − ε

2 .

In particular, for every x ∈ Rn

f(x) + ε

2 ≥ f(x) ≥ Qtf(x) ≥ inf
y∈B(x,Rt)

f(y) ≥ f(x) − ε

2
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or in other words
|Qtf(x) − f(x)| ≤ ε

2 < ε

so Qtf → f uniformly on Rn.

(c) Take t1, t2 ∈ [ε,+∞[ and x1, x2 ∈ Rn. Recalling what we proved in (b),

Qt1f(x1) = inf
y∈B(x1,Rt1 )

{
f(y) + 1

2t1
|x1 − y|2

}

and, from the definition of Hopf–Lax semigroup,

Qt2f(x2) = inf
y∈Rn

{
f(y) + 1

2t2
|x2 − y|2

}
≤ inf

y∈B(x1,Rt1 )

{
f(y) + 1

2t2
|x2 − y|2

}
,

so, observing that

inf f = inf {g + (f − g)} ≥ inf g + inf {f − g} ,

then
inf f − inf g ≥ inf {f − g} ,

from

Qt1f(x1) −Qt2f(x2) ≥ inf
y∈B(x1,Rt1 )

{
f(y) + 1

2t1
|x1 − y|2

}
+

− inf
y∈B(x1,Rt1 )

{
f(y) + 1

2t2
|x2 − y|2

}
,

we have

Qt1f(x1) −Qt2f(x2) ≥ inf
y∈B(x1,Rt1 )

{
f(y) + 1

2t1
|x1 − y|2 − f(y) − 1

2t2
|x2 − y|2

}
=

= inf
y∈B(x1,Rt1 )

{ 1
2t1

|x1 − y|2 − 1
2t2

|x2 − y|2
}
.

Resuming,

(1.2) Qt1f(x1) −Qt2f(x2) ≥ inf
y∈B(x1,Rt1 )

{ 1
2t1

|x1 − y|2 − 1
2t2

|x2 − y|2
}
.

Now, if we write (1.2) with x1 = x2 = x,

Qt1f(x) −Qt2f(x) ≥ inf
y∈B(x,Rt1 )

{( 1
2t1

− 1
2t2

)
|x− y|2

}
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so
Qt1f(x) −Qt2f(x) ≥ inf

y∈B(x,Rt1 )

{
−
∣∣∣∣ 1
2t1

− 1
2t2

∣∣∣∣|x− y|2
}
,

then

Qt1f(x) −Qt2f(x) ≥
∣∣∣∣ 1
2t1

− 1
2t2

∣∣∣∣ inf
y∈B(x,Rt1 )

{
−|x− y|2

}
=

= −
∣∣∣∣ 1
2t1

− 1
2t2

∣∣∣∣ sup
y∈B(x,Rt1 )

|x− y|2,

therefore

Qt1f(x) −Qt2f(x) ≥ −
∣∣∣∣ 1
2t1

− 1
2t2

∣∣∣∣R2
t1 = −

∣∣∣∣ 1
2t1

− 1
2t2

∣∣∣∣2t1(sup f − inf f) =

= −
∣∣∣∣ 1t1 − 1

t2

∣∣∣∣t1(sup f − inf f).

Analogously,
Qt2f(x) −Qt1f(x) ≥ −

∣∣∣∣ 1t1 − 1
t2

∣∣∣∣t2(sup f − inf f)

or, in other words,

Qt1f(x) −Qt2f(x) ≤
∣∣∣∣ 1t1 − 1

t2

∣∣∣∣t2(sup f − inf f),

so

−
∣∣∣∣ 1t1 − 1

t2

∣∣∣∣t1(sup f − inf f) ≤ Qt1f(x) −Qt2f(x) ≤
∣∣∣∣ 1t1 − 1

t2

∣∣∣∣t2(sup f − inf f),

then

|Qt1f(x) −Qt2f(x)| ≤
∣∣∣∣ 1t1 − 1

t2

∣∣∣∣max {t1, t2} (sup f − inf f) =

= sup f − inf f
min {t1, t2}

|t1 − t2| ≤ sup f − inf f
ε

|t1 − t2|.

Writing instead (1.2) with t1 = t2 = t, using the triangle inequality,

Qtf(x1) −Qtf(x2) ≥ inf
y∈B(x1,Rt)

{ 1
2t
(
|x1 − y|2 − |x2 − y|2

)}
=

= 1
2t inf

y∈B(x1,Rt)
{(|x1 − y| − |x2 − y|) (|x1 − y| + |x2 − y|)}

≥ 1
2t inf

y∈B(x1,Rt)
{−|x1 − x2| (2|x1 − y| + |x1 − x2|)} ≥
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≥ − 1
2t sup

y∈B(x1,Rt)

{
2|x1 − y||x1 − x2| + |x1 − x2|2

}

so

Qtf(x1) −Qtf(x2) ≥ −Rt

t
|x1 − x2| − 1

2t |x1 − x2|2 =

= −

√
2(sup f − inf f)

√
t

|x1 − x2| − 1
2t |x1 − x2|2.

Analogously,

Qtf(x2) −Qtf(x1) ≥ −

√
2(sup f − inf f)

√
t

|x1 − x2| − 1
2t |x1 − x2|2.

or, in other words,

Qtf(x1) −Qtf(x2) ≤

√
2(sup f − inf f)

√
t

|x1 − x2| + 1
2t |x1 − x2|2,

so

|Qtf(x1) −Qtf(x2)| ≤

√
2(sup f − inf f)

√
ε

|x1 − x2| + 1
2ε |x1 − x2|2 ≤

≤

√
2(sup f − inf f)

√
ε

|x1 − x2| + 1
ε

|x1 − x2|2.

Now, for every ξ ∈ Rn we have

sup
x1,x2∈Rn

x1 ̸=x2

|Qtf(x1) −Qtf(x2)|
|x1 − x2|

=

= max

 sup
x1,x2∈B(ξ,Rε)

x1 ̸=x2

|Qtf(x1) −Qtf(x2)|
|x1 − x2|

, sup
x1,x2∈Rn\B(ξ,Rε)

x1 ̸=x2

|Qtf(x1) −Qtf(x2)|
|x1 − x2|

 ,
so

sup
x1,x2∈Rn

x1 ̸=x2

|Qtf(x1) −Qtf(x2)|
|x1 − x2|

≤ max
2

√
2(sup f − inf f)

√
ε

,

√
2∥Qtf∥∞√

ε(sup f − inf f)

 ≤

≤ max
2

√
2(sup f − inf f)

√
ε

,

√
2∥f∥∞√

ε(sup f − inf f)

 < +∞.
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Finally,

|Qt1f(x1) −Qt2f(x2)| ≤ |Qt1f(x1) −Qt2f(x1)| + |Qt2f(x1) −Qt2f(x2)| ≤

≤ sup f − inf f
ε

|t1 − t2| + max
2

√
2(sup f − inf f)

√
ε

,

√
2∥f∥∞√

ε(sup f − inf f)

 |x1 − x2|,

then, set

Cε(f) = sup f − inf f
ε

+ max
2

√
2(sup f − inf f)

√
ε

,

√
2∥f∥∞√

ε(sup f − inf f)

 ,
we obtain

|Qt1f(x1)−Qt2f(x2)| ≤ Cε(f) (|t1 − t2| + |x1 − x2|) ≤
√

2Cε(f)
√

(t1 − t2)2 + (x1 − x2)2,

therefore Qtf is Lipschitz on [ε,+∞[ × Rn.

(d) Using (c) and Rademacher’s Theorem (see, for example, [24]), for a.e. x ∈ Rn, for
a.e. t ∈ ]0,+∞[, the function {y 7−→ Qtf(y)} is differentiable at x. Let us also observe
that Rn is a reflexive Banach space and the function

{
y 7−→ f(y) + 1

2t |x− y|2
}

is proper
and weakly lower semicontinuous, being continuous and bounded. Furthermore, it is
also coercive: indeed, using the triangle inequality of the norm,

f(y) + 1
2t |x− y|2 ≥ 1

2t |y|2 − |x|
t

|y| + (inf f + |x|) ≥ A|y| +B,

for some A > 0, B ∈ R. In particular, the direct method of the Calculus of Variations
gives us the existence of a minimizer Jt(x). By [1, Lecture 14, Section 3], we know that
for every x ∈ Rn, for a.e. t ∈ ]0,+∞[

d

dt
Qtf(x) = −|x− Jt(x)|2

2t2 .

Let us prove that for every differentiability point x of the function {y 7−→ Qtf(y)}
it holds

D(Qtf)(x) = x− Jt(x)
t

.

Let us start observing that

−Qtf(x) + 1
2t |x|2 = − inf

y∈Rn

{
f(y) + 1

2t |x− y|2
}

+ 1
2t |x|2 =
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= sup
y∈Rn

{
−f(y) − 1

2t |x− y|2
}

+ 1
2t |x|2 =

= sup
y∈Rn

{
−f(y) − 1

2t |x− y|2 + 1
2t |x|2

}
=

= sup
y∈Rn

{1
t
y · x−

(
f(y) + 1

2t |y|2
)}

so, being the supremum of a family of affine functions,
{
x 7−→ −Qtf(x) + 1

2t |x|2
}

is a
convex function. In other words, −Qtf is −1

t
-convex. By the fact that

Qtf(y) −Qtf(x) ≤ f(Jt(x)) + 1
2t |y − Jt(x)|2 −

(
f(Jt(x)) + 1

2t |x− Jt(x)|2
)

=

= 1
2t
(
(y − Jt(x)) · (y − Jt(x)) + |x− Jt(x)|2

)
=

= 1
2t
[
((y − x) + (x− Jt(x))) · ((y − x) + (x− Jt(x))) +

+ |x− Jt(x)|2
]

=

= 1
2t
(
|y − x|2 + 2(x− Jt(x)) · (y − x)

)
=

= x− Jt(x)
t

· (y − x) + 1
2t |y − x|2,

we have that

−Qtf(y) − (−Qtf(x)) ≥ −x− Jt(x)
t

· (y − x) − 1
2t |y − x|2,

so
−x− Jt(x)

t
∈ ∂− 1

t
(−Qtf)(x).

Being Qtf differentiable at x, we obtain

D(−Qtf)(x) = −x− Jt(x)
t

then, by linearity,
D(Qtf)(x) = x− Jt(x)

t
.

In particular,
d

dt
Qtf(x) = −|x− Jt(x)|2

2t2 = −1
2 |D(Qtf)(x)|2,

so the result follows.

(e) First of all, for every x ∈ Rn and t > 0, given Rt = 2tLip(f), consider B(x,Rt). We
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have
inf

y∈B(x,Rt)

{
f(y) + 1

2t |x− y|2
}

≤ f(x)

and, by the fact that f is Lipschitz, for every y ∈ Rn \ B(x,Rt) we have

f(y) + 1
2t |x− y|2 = f(y) + 1

2t |x− y||x− y| >

> f(y) + 1
2tRt|x− y| = f(y) + Lip(f)|x− y| ≥

≥ f(y) + f(x) − f(y) = f(x)

so
inf

y∈Rn\B(x,Rt)

{
f(y) + 1

2t |x− y|2
}

≥ f(x) ≥ inf
y∈B(x,Rt)

{
f(y) + 1

2t |x− y|2
}
.

Observing that

Qtf(x) = min
{

inf
y∈B(x,Rt)

{
f(y) + 1

2t |x− y|2
}
, inf
y∈Rn\B(x,Rt)

{
f(y) + 1

2t |x− y|2
}}

,

we get

(1.3) Qtf(x) = inf
y∈B(x,Rt)

{
f(y) + 1

2t |x− y|2
}
.

Consider t1, t2 ∈ [0,+∞[ and x1, x2 ∈ Rn. If t1, t2 > 0, in a similar way to what we have
done in (c), we can prove that

(1.4) Qt1f(x1) −Qt2f(x2) ≥ inf
y∈B(x1,Rt1 )

{ 1
2t1

|x1 − y|2 − 1
2t2

|x2 − y|2
}
.

Writing (1.4) with t1 = t2 = t and using the triangle inequality,

Qtf(x1) −Qtf(x2) ≥ inf
y∈B(x1,Rt)

{ 1
2t
(
|x1 − y|2 − |x2 − y|2

)}
=

= 1
2t inf

y∈B(x1,Rt)
{(|x1 − y| − |x2 − y|) (|x1 − y| + |x2 − y|)}

≥ 1
2t inf

y∈B(x1,Rt)
{−|x1 − x2| (2|x1 − y| + |x1 − x2|)} ≥

≥ − 1
2t sup

y∈B(x1,Rt)

{
2|x1 − y||x1 − x2| + |x1 − x2|2

}
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so

Qtf(x1) −Qtf(x2) ≥ −Rt

t
|x1 − x2| − 1

2t |x1 − x2|2 =

= −2Lip(f)|x1 − x2| − 1
2t |x1 − x2|2.

Analogously,

Qtf(x2) −Qtf(x1) ≥ −2Lip(f)|x1 − x2| − 1
2t |x1 − x2|2

or, in other words,

Qtf(x1) −Qtf(x2) ≤ 2Lip(f)|x1 − x2| + 1
2t |x1 − x2|2,

so
|Qtf(x1) −Qtf(x2)| ≤ 2Lip(f)|x1 − x2| + 1

2t |x1 − x2|2.

In particular, if |x1 − x2| ≤ t,

|Qtf(x1) −Qtf(x2)| ≤
(

2Lip(f) + 1
2

)
|x1 − x2|.

Conversely, if we are in the case |x1 − x2| ≥ t, consider (yh) in Rn such that

Qtf(x1) ≥ f(yh) + 1
2t |x1 − yh|2 − 1

h+ 1 .

Using the Lipschitzianity of f , f(yh) − f(x1) ≥ −Lip(f)|x1 − yh|, so

Qtf(x1) ≥ f(x1) − Lip(f)|x1 − yh| + 1
2t |x1 − yh|2 − 1

h+ 1 .

Expanding the trivial inequality 1
2t (Lip(f) − |x1 − yh|)2 ≥ 0, we obtain

−L|x1 − yh| + 1
2t |x1 − yh|2 + Lip2(f)t

2 ≥ 0,

so
Qtf(x1) ≥ f(x1) − Lip2(f)t

2 − 1
h+ 1

and passing to the limit as h → +∞

Qtf(x1) ≥ f(x1) − Lip2(f)t
2 ,
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then, by the fact that Qtf(x2) ≤ f(x2),

Qtf(x1) −Qtf(x2) ≥ f(x1) − Lip2(f)t
2 − f(x2) ≥ −Lip(f)|x1 − x2| − Lip2(f)t

2 .

Analogously,

Qtf(x2) −Qtf(x1) ≥ −Lip(f)|x1 − x2| − Lip2(f)t
2

or, in other words,

Qtf(x1) −Qtf(x2) ≤ Lip(f)|x1 − x2| + Lip2(f)t
2 ,

so

|Qtf(x1) −Qtf(x2)| ≤ Lip(f)|x1 − x2| + Lip2(f)t
2 ≤ 1

2Lip(f) (1 + Lip(f)) |x1 − x2|.

Resuming,

(1.5) |Qtf(x1) −Qtf(x2)| ≤ max
{1

2Lip(f) (1 + Lip(f)) , 2Lip(f) + 1
2

}
|x1 − x2|,

so, fixed t > 0, the function {x 7−→ Qtf(x)} is Lipschitz. Now, if t1 ≤ t2, by (c), the
function Qtf is Lipschitz on [t1,+∞[ × Rn so, in particular, on [t1, t2] × Rn. Therefore,
for every x ∈ Rn

|Qt1f(x) −Qt2f(x)| ≤
ˆ t2

t1

∣∣∣∣∣ ddtQt(x)
∣∣∣∣∣dt.

By (d), there exists (xh) in Rn such that xh → x and for a.e. t > 0 and every h ∈ N

d

dt
Qtf(xh) + 1

2 |D (Qtf) (xh)|2 = 0,

so
|Qt1f(xh) −Qt2f(xh)| ≤ 1

2

ˆ t2

t1

|D (Qtf) (xh)|2dt

and using (1.5),

|Qt1f(xh) −Qt2f(xh)| ≤ 1
2

(
max

{1
2Lip(f) (1 + Lip(f)) , 2Lip(f) + 1

2

})2
|t1 − t2|.

Using again the fact that {x 7−→ Qtf(x)} is Lipschitz, we can pass to the limit and
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obtain

(1.6) |Qt1f(x) −Qt2f(x)| ≤ 1
2

(
max

{1
2Lip(f) (1 + Lip(f)) , 2Lip(f) + 1

2

})2
|t1 − t2|.

The case t2 ≤ t1 is analogous. Using now the triangle inequality, (1.5) and (1.6), we
obtain

|Qt1f(x1) −Qt2f(x2)| ≤ |Qt1f(x1) −Qt2f(x1)| + |Qt2f(x1) −Qt2f(x2)| ≤
√

2 max
{1

2Lip(f) (1 + Lip(f)) , 2Lip(f) + 1
2

}
(

1 + max
{1

2Lip(f) (1 + Lip(f)) , 2Lip(f) + 1
2

})
√

|x1 − x2|2 + |t1 − t2|2,

so {(t, x) 7−→ Qtf(x)} is Lipschitz on ]0,+∞[ × Rn. Furthermore, there exists a unique
Lipschitz extension to ]0,+∞[ × Rn and, by (b) it coincides with Q0f(x) so the global
Lipschitzianity follows.

(f) Suppose, initially, that f ∈ Lipb(Rn). For every (t, x) ∈ ]0,+∞[ × Rn, consider
xt ∈ Rn such that

Qtf(x) = f(xt) + 1
2t |x− xt|2

and such that for any other minimizer ξ of Qtf(x),

|x− ξ|2 ≤ |x− xt|.

For every t, h > 0

Qt+hf(x) −Qtf(x) ≤ f(xt) + 1
2(t+ h) |x− xt|2 −

(
f(xt) + 1

2t |x− xt|2
)

≤

≤ − h

2t(t+ h) |x− xt|2,

so
Qt+hf(x) −Qtf(x)

h
≤ − |x− xt|2

2t(t+ h)

and for h → 0+

d+

dt
Qtf(x) ≤ −|x− xt|2

2t2 .

In particular, by [2, Proposition 3.2], we get that the function {(t, x) 7−→ |x− xt|} is
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upper semicontinuous. Then, considering yt such that

Qtf(y) = f(yt) + 1
2t |y − yt|,

we have

lim
r→0

sup
y,z∈B(x,r)

Qtf(z) −Qtf(y)
|y − z|

≤ lim
r→0

sup
y,z∈B(x,r)

1
2t

|z − yt|2 − |y − yt|2

|y − z|
=

= lim
r→0

sup
y,z∈B(x,r)

1
2t

(|z − yt| − |y − yt|) (|z − yt| + |y − yt|)
|y − z|

so

lim
r→0

sup
y,z∈B(x,r)

Qtf(z) −Qtf(y)
|y − z|

≤ lim
r→0

sup
y,z∈B(x,r)

1
2t(|z − yt| + |y − yt|) ≤

≤ lim
r→0

sup
y,z∈B(x,r)

1
2t(|z − y| + 2|y − yt|) ≤

≤ lim
r→0

sup
y∈B(x,r)

1
2t(2r + 2|y − yt|) ≤

≤ 1
t

lim
r→0

sup
y∈B(x,r)

|y − yt| ≤ |x− xt|
t

.

Resuming,
|D∗(Qtf)|(x) ≤ |x− xt|

t

and, in particular,

d+

dt
Qtf(x) + 1

2 |D∗ (Qtf)|2(x) ≤ −|x− xt|2

2t2 + |x− xt|2

2t2 = 0.

The general case is similar up to change minimizers with minimizing sequences.

(g) If at least one between s, t is equal to 0, it is trivial. We then consider only the case
s, t > 0. Let us start proving that for every s, t ≥ 0,

Qs+tf ≤ (Qs ◦Qt)f.

For every x, y, z ∈ Rn, by Proposition (6.6) and the triangle inequality,

f(y) + 1
2(s+ t) |x− y|2 ≤ f(y) + 1

2t |y − z|2 + 1
2s |x− z|2.
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Passing to the infimum, with respect to y, both sides we obtain

Qs+tf(x) ≤ inf
y∈Rn

{
f(y) + 1

2t |y − z|2 + 1
2s |x− z|2

}
≤

≤ inf
y∈Rn

{
f(y) + 1

2t |y − z|2
}

+ 1
2s |x− z|2

and if now we also pass to the infimum, with respect to z, we get

Qs+tf(x) ≤ inf
z∈Rn

{
inf
y∈Rn

{
f(y) + 1

2t |y − z|2
}

+ 1
2s |x− z|2

}
= (Qs ◦Qt)f(x).

Now, let us prove that for every s, t > 0 and for every x, z ∈ Rn, it holds

inf
y∈Rn

{ 1
2s |x− y|2 + 1

2t |y − z|2
}

≤ 1
2(t+ s) |x− z|2.

On the segment connecting x and z, consider y such that

|x− y| = t

s
|z − y|.

x

z

y

Figure A.1: A point y on the segment connecting x and z.

In particular, Proposition (6.6) holds an equality, then

|x− y|
2s + |z − y|

2t = (|x− y| + |z − y|)2

2(t+ s) = |x− z|2

2(t+ s) .

Passing to the infimum, with respect to y ∈ Rn, both sides we obtain

inf
y∈Rn

{ 1
2s |x− y|2 + 1

2t |y − z|2
}

≤ |x− z|2

2(t+ s) .



169

Consider now (yh) in Rn such that

1
2s |x− yh|2 + 1

2t |yh − z|2 < inf
y∈Rn

{ 1
2s |x− y|2 + 1

2t |y − z|2
}

+ 1
h+ 1 ≤

≤ 1
2(t+ s) |x− z|2 + 1

h+ 1 .

Adding up both sides f(z) and passing to the infimum, with respect to z, we get

inf
z∈Rn

{
f(z) + 1

2t |yh − z|2
}

+ 1
2s |x− yh|2 ≤ Qs+tf(x) + 1

h+ 1

so, passing to the infimum, with respect to y, we arrive at

(Qs ◦Qt)f(x) ≤ Qs+tf(x) + 1
h+ 1 .

Letting h → +∞,
(Qs ◦Qt)f(x) ≤ Qs+tf(x),

then
Qs+tf = (Qs ◦Qt)f

and the proof is concluded.
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